Scattering-Passive Structure-Preserving Finite Element Method for the Boundary Controlled Transport Equation with a Moving Mesh
Authors
Jesus-Pablo Toledo-Zucco, Denis Matignon, Charles Poussot-Vassal
Abstract
A structure-preserving Finite Element Method (FEM) for the transport equation in one- and two-dimensional domains is presented. This Distributed Parameter System (DPS) has non-collocated boundary control and observation, and reveals a scattering-energy preserving structure. We show that the discretized model preserves the aforementioned structure from the original infinite-dimensional system. Moreover, we analyse the case of moving meshes for the one-dimensional case. The moving mesh requires less states than the fixed one to produce solutions with a comparable accuracy, and it can also reduce the overshoot and oscillations of Gibbs phenomenon produced when using the FEM. Numerical simulations are provided for the case of a one-dimensional transport equation with fixed and moving meshes.
Keywords
Transport phenomena; Finite Element Method; Boundary Control; Moving mesh
Citation
- Journal: IFAC-PapersOnLine
- Year: 2024
- Volume: 58
- Issue: 6
- Pages: 292–297
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2024.08.296
- Note: 8th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2024- Besançon, France, June 10 – 12, 2024
BibTeX
@article{Toledo_Zucco_2024,
title={{Scattering-Passive Structure-Preserving Finite Element Method for the Boundary Controlled Transport Equation with a Moving Mesh}},
volume={58},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2024.08.296},
number={6},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Toledo-Zucco, Jesus-Pablo and Matignon, Denis and Poussot-Vassal, Charles},
year={2024},
pages={292--297}
}
References
- Aydoğdu, A., Carrassi, A., Guider, C. T., Jones, C. K. R. T. & Rampal, P. Data assimilation using adaptive, non-conservative, moving mesh models. Nonlinear Processes in Geophysics vol. 26 175–193 (2019) – 10.5194/npg-26-175-2019
- Bastin, G. & Coron, J.-M. Stability and Boundary Stabilization of 1-D Hyperbolic Systems. Progress in Nonlinear Differential Equations and Their Applications (Springer International Publishing, 2016). doi:10.1007/978-3-319-32062-5 – 10.1007/978-3-319-32062-5
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A structure-preserving Partitioned Finite Element Method for the 2D wave equation. IFAC-PapersOnLine vol. 51 119–124 (2018) – 10.1016/j.ifacol.2018.06.033
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Deng, Y. et al. Predictor-based control of time-delay systems: a survey. International Journal of Systems Science vol. 53 2496–2534 (2022) – 10.1080/00207721.2022.2056654
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Haine, G., Matignon, D. & Monteghetti, F. Structure-preserving discretization of Maxwell’s equations as a port-Hamiltonian system. IFAC-PapersOnLine vol. 55 424–429 (2022) – 10.1016/j.ifacol.2022.11.090
- Huang, W., Ren, Y. & Russell, R. D. Moving Mesh Methods Based on Moving Mesh Partial Differential Equations. Journal of Computational Physics vol. 113 279–290 (1994) – 10.1006/jcph.1994.1135
- Huang, W., Zheng, L. & Zhan, X. Adaptive moving mesh methods for simulating one‐dimensional groundwater problems with sharp moving fronts. International Journal for Numerical Methods in Engineering vol. 54 1579–1603 (2002) – 10.1002/nme.482
- Kotyczka, P. Finite Volume Structure-Preserving Discretization of 1D Distributed-Parameter Port-Hamiltonian Systems. IFAC-PapersOnLine vol. 49 298–303 (2016) – 10.1016/j.ifacol.2016.07.457
- Krstic, M. & Smyshlyaev, A. Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays. Systems & Control Letters vol. 57 750–758 (2008) – 10.1016/j.sysconle.2008.02.005
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes vol. 25 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Serhani, A., Matignon, D. & Haine, G. Partitioned Finite Element Method for port-Hamiltonian systems with Boundary Damping: Anisotropic Heterogeneous 2D wave equations. IFAC-PapersOnLine vol. 52 96–101 (2019) – 10.1016/j.ifacol.2019.08.017
- Seslija, M., van der Schaft, A. & Scherpen, J. M. A. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems. Journal of Geometry and Physics vol. 62 1509–1531 (2012) – 10.1016/j.geomphys.2012.02.006
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051