Scattering for infinite dimensional port Hamiltonian systems
Authors
A. Macchelli, S. Stramigioli, A. van der Schaft, C. Melchiorri
Abstract
In this paper, an introduction to scattering for infinite dimensional systems within the framework of port Hamiltonian systems is presented. The classical results on wave propagation can be extended to generic power propagation phenomena, for example to fluid dynamics or flexible structures. The key-point is the generalization of the concept of impedance to other domains than the electromagnetic one.
Citation
- Journal: Proceedings of the 41st IEEE Conference on Decision and Control, 2002.
- Year: 2004
- Volume: 4
- Issue:
- Pages: 4581–4586
- Publisher: IEEE
- DOI: 10.1109/cdc.2002.1185098
BibTeX
@inproceedings{Macchelli,
series={CDC-02},
title={{Scattering for infinite dimensional port Hamiltonian systems}},
volume={4},
DOI={10.1109/cdc.2002.1185098},
booktitle={{Proceedings of the 41st IEEE Conference on Decision and Control, 2002.}},
publisher={IEEE},
author={Macchelli, A. and Stramigioli, S. and van der Schaft, A. and Melchiorri, C.},
pages={4581--4586},
collection={CDC-02}
}
References
- stramigioli, Modeling and IPC Control of Interactive Mechanical Systems A Coordinate-Free Approach (2001)
- Stramigioli, S., van der Schaft, A., Maschke, B. & Melchiorri, C. Geometric scattering in robotic telemanipulation. IEEE Trans. Robot. Automat. 18, 588–596 (2002) – 10.1109/tra.2002.802200
- lax, Scattering theory. Pure and Applied Mathematics (1967)
- ingarden, Classical Electrodynamics (1985)
- abraham, Foundation of Mechanics (1978)
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- maschke, Port Controlled Hamiltonian Representation of Distributed Parameter Systems (2001)
- warnick, Green Form for Anisotropic Inhomogeneous Media (1997)
- Dubrovin, B. A., Novikov, S. P. & Fomenko, A. T. Modern Geometry — Methods and Applications. Graduate Texts in Mathematics (Springer New York, 1992). doi:10.1007/978-1-4612-4398-4 – 10.1007/978-1-4612-4398-4