Riemannian optimization model order reduction method for general linear port-Hamiltonian systems
Authors
Zi-Xue Li, Yao-Lin Jiang, Kang-Li Xu
Abstract
This paper presents a Riemannian optimal model order reduction method for general linear stable port-Hamiltonian systems based on the Riemannian trust-region method. We consider the \( \mathcal{H}_2 \) optimal model order reduction problem of the general linear port-Hamiltonian systems. The problem is formulated as an optimization problem on the product manifold, which is composed of the set of skew symmetric matrices, the manifold of the positive definite matrices, the manifold of the positive semidefinite matrices with fixed rank and the Euclidean space. To solve the optimal problem, the Riemannian geometry of the product manifold is given. Moreover, the Riemannian gradient and the Riemannian Hessian of the objective function are derived. Furthermore, we propose the Riemannian trust-region method for the optimization problem and introduce the truncated conjugate gradient method to solve the trust-region subproblem. Finally, the numerical experiments illustrate the efficiency of the proposed method.
Citation
- Journal: IMA Journal of Mathematical Control and Information
- Year: 2022
- Volume: 39
- Issue: 2
- Pages: 590–608
- Publisher: Oxford University Press (OUP)
- DOI: 10.1093/imamci/dnac001
BibTeX
@article{Li_2022,
title={{Riemannian optimization model order reduction method for general linear port-Hamiltonian systems}},
volume={39},
ISSN={1471-6887},
DOI={10.1093/imamci/dnac001},
number={2},
journal={IMA Journal of Mathematical Control and Information},
publisher={Oxford University Press (OUP)},
author={Li, Zi-Xue and Jiang, Yao-Lin and Xu, Kang-Li},
year={2022},
pages={590--608}
}
References
- Absil, Optimization methods on Riemannian Matrix Manifolds (2008)
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica vol. 48 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052
- Helmke, Optimization and Dynamical Systems (1996)
- Helmke, U. & Shayman, M. A. Critical points of matrix least squares distance functions. Linear Algebra and its Applications vol. 215 1–19 (1995) – 10.1016/0024-3795(93)00070-g
- Huang, Y., Jiang, Y. & Xu, K. Structure‐preserving model reduction of port‐Hamiltonian systems based on projection. Asian Journal of Control vol. 23 1782–1791 (2020) – 10.1002/asjc.2332
- Ionescu, T. C. & Astolfi, A. Families of moment matching based, structure preserving approximations for linear port Hamiltonian systems. Automatica vol. 49 2424–2434 (2013) – 10.1016/j.automatica.2013.05.006
- Jeuris, A survey and comparison of ceontemporary algorithms for computing the matrix geometric mean. Electron. Trans. Numer. Anal. (2012)
- Jiang, Morder Order Reduction Methods (2010)
- Jiang, Y.-L. & Xu, K.-L. Model Order Reduction of Port-Hamiltonian Systems by Riemannian Modified Fletcher–Reeves Scheme. IEEE Transactions on Circuits and Systems II: Express Briefs vol. 66 1825–1829 (2019) – 10.1109/tcsii.2019.2895872
- Jiang, Y.-L. & Xu, K.-L. Riemannian Modified Polak–Ribière–Polyak Conjugate Gradient Order Reduced Model by Tensor Techniques. SIAM Journal on Matrix Analysis and Applications vol. 41 432–463 (2020) – 10.1137/19m1257147
- Moore, B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Transactions on Automatic Control vol. 26 17–32 (1981) – 10.1109/tac.1981.1102568
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica vol. 46 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- Polyuga, R. V. & van der Schaft, A. J. Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Systems & Control Letters vol. 61 412–421 (2012) – 10.1016/j.sysconle.2011.12.008
- Qi, Z., Jiang, Y. & Xiao, Z. Structure‐preserved MOR method for coupled systems via orthogonal polynomials and Arnoldi algorithm. IET Circuits, Devices & Systems vol. 13 879–887 (2019) – 10.1049/iet-cds.2018.5076
- Sato, K. Riemannian optimal model reduction of linear port-Hamiltonian systems. Automatica vol. 93 428–434 (2018) – 10.1016/j.automatica.2018.03.051
- Steihaug, T. The Conjugate Gradient Method and Trust Regions in Large Scale Optimization. SIAM Journal on Numerical Analysis vol. 20 626–637 (1983) – 10.1137/0720042
- Vandereycken, Embedded geometry of the set of symmetric positive semidefinite matrices of fixed rank. IEEE/SP 15th Workshop on Statistical Signal Processing (2009)
- Vandereycken, B. & Vandewalle, S. A Riemannian Optimization Approach for Computing Low-Rank Solutions of Lyapunov Equations. SIAM Journal on Matrix Analysis and Applications vol. 31 2553–2579 (2010) – 10.1137/090764566
- Wang, X. & Jiang, Y. Model reduction of discrete-time bilinear systems by a Laguerre expansion technique. Applied Mathematical Modelling vol. 40 6650–6662 (2016) – 10.1016/j.apm.2016.02.015
- Xu, K.-L., Jiang, Y.-L. & Yang, Z.-X. H2optimal model order reduction by two-sided technique on Grassmann manifold via the cross-gramian of bilinear systems. International Journal of Control vol. 90 616–626 (2016) – 10.1080/00207179.2016.1186845
- Xu, K. & Jiang, Y. Structure‐preserving interval‐limited balanced truncation reduced models for port‐Hamiltonian systems. IET Control Theory & Applications vol. 14 405–414 (2020) – 10.1049/iet-cta.2019.0566
- Xu, K.-L. & Jiang, Y.-L. An unconstrained H 2 model order reduction optimisation algorithm based on the Stiefel manifold for bilinear systems. International Journal of Control vol. 92 950–959 (2017) – 10.1080/00207179.2017.1376115
- Wei-Yong Yan & Lam, J. An approximate approach to H/sup 2/ optimal model reduction. IEEE Transactions on Automatic Control vol. 44 1341–1358 (1999) – 10.1109/9.774107
- Yu, Structure preserving truncation of nonlinear port-Hamiltonian systems. IEEE Trans. Autom. Control (2018)