Riemannian optimization model order reduction method for general linear port-Hamiltonian systems
Authors
Zi-Xue Li, Yao-Lin Jiang, Kang-Li Xu
Abstract
This paper presents a Riemannian optimal model order reduction method for general linear stable port-Hamiltonian systems based on the Riemannian trust-region method. We consider the
Citation
- Journal: IMA Journal of Mathematical Control and Information
- Year: 2022
- Volume: 39
- Issue: 2
- Pages: 590–608
- Publisher: Oxford University Press (OUP)
- DOI: 10.1093/imamci/dnac001
BibTeX
@article{Li_2022,
title={{Riemannian optimization model order reduction method for general linear port-Hamiltonian systems}},
volume={39},
ISSN={1471-6887},
DOI={10.1093/imamci/dnac001},
number={2},
journal={IMA Journal of Mathematical Control and Information},
publisher={Oxford University Press (OUP)},
author={Li, Zi-Xue and Jiang, Yao-Lin and Xu, Kang-Li},
year={2022},
pages={590--608}
}
References
- Absil, Optimization methods on Riemannian Matrix Manifolds (2008)
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica vol. 48 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052
- Helmke, Optimization and Dynamical Systems (1996)
- Helmke, U. & Shayman, M. A. Critical points of matrix least squares distance functions. Linear Algebra and its Applications vol. 215 1–19 (1995) – 10.1016/0024-3795(93)00070-g
- Huang, Y., Jiang, Y. & Xu, K. Structure‐preserving model reduction of port‐Hamiltonian systems based on projection. Asian Journal of Control vol. 23 1782–1791 (2020) – 10.1002/asjc.2332
- Ionescu, T. C. & Astolfi, A. Families of moment matching based, structure preserving approximations for linear port Hamiltonian systems. Automatica vol. 49 2424–2434 (2013) – 10.1016/j.automatica.2013.05.006
- Jeuris, A survey and comparison of ceontemporary algorithms for computing the matrix geometric mean. Electron. Trans. Numer. Anal. (2012)
- Jiang, Morder Order Reduction Methods (2010)
- Jiang, Y.-L. & Xu, K.-L. Model Order Reduction of Port-Hamiltonian Systems by Riemannian Modified Fletcher–Reeves Scheme. IEEE Transactions on Circuits and Systems II: Express Briefs vol. 66 1825–1829 (2019) – 10.1109/tcsii.2019.2895872
- Jiang, Y.-L. & Xu, K.-L. Riemannian Modified Polak–Ribière–Polyak Conjugate Gradient Order Reduced Model by Tensor Techniques. SIAM Journal on Matrix Analysis and Applications vol. 41 432–463 (2020) – 10.1137/19m1257147
- Moore, B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Transactions on Automatic Control vol. 26 17–32 (1981) – 10.1109/tac.1981.1102568
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica vol. 46 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- Polyuga, R. V. & van der Schaft, A. J. Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Systems & Control Letters vol. 61 412–421 (2012) – 10.1016/j.sysconle.2011.12.008
- Qi, Z., Jiang, Y. & Xiao, Z. Structure‐preserved MOR method for coupled systems via orthogonal polynomials and Arnoldi algorithm. IET Circuits, Devices & Systems vol. 13 879–887 (2019) – 10.1049/iet-cds.2018.5076
- Sato, K. Riemannian optimal model reduction of linear port-Hamiltonian systems. Automatica vol. 93 428–434 (2018) – 10.1016/j.automatica.2018.03.051
- Steihaug, T. The Conjugate Gradient Method and Trust Regions in Large Scale Optimization. SIAM Journal on Numerical Analysis vol. 20 626–637 (1983) – 10.1137/0720042
- Vandereycken, Embedded geometry of the set of symmetric positive semidefinite matrices of fixed rank. IEEE/SP 15th Workshop on Statistical Signal Processing (2009)
- Vandereycken, B. & Vandewalle, S. A Riemannian Optimization Approach for Computing Low-Rank Solutions of Lyapunov Equations. SIAM Journal on Matrix Analysis and Applications vol. 31 2553–2579 (2010) – 10.1137/090764566
- Wang, X. & Jiang, Y. Model reduction of discrete-time bilinear systems by a Laguerre expansion technique. Applied Mathematical Modelling vol. 40 6650–6662 (2016) – 10.1016/j.apm.2016.02.015
- Xu, K.-L., Jiang, Y.-L. & Yang, Z.-X. H2optimal model order reduction by two-sided technique on Grassmann manifold via the cross-gramian of bilinear systems. International Journal of Control vol. 90 616–626 (2016) – 10.1080/00207179.2016.1186845
- Xu, K. & Jiang, Y. Structure‐preserving interval‐limited balanced truncation reduced models for port‐Hamiltonian systems. IET Control Theory & Applications vol. 14 405–414 (2020) – 10.1049/iet-cta.2019.0566
- Xu, K.-L. & Jiang, Y.-L. An unconstrained H 2 model order reduction optimisation algorithm based on the Stiefel manifold for bilinear systems. International Journal of Control vol. 92 950–959 (2017) – 10.1080/00207179.2017.1376115
- Wei-Yong Yan & Lam, J. An approximate approach to H/sup 2/ optimal model reduction. IEEE Transactions on Automatic Control vol. 44 1341–1358 (1999) – 10.1109/9.774107
- Yu, Structure preserving truncation of nonlinear port-Hamiltonian systems. IEEE Trans. Autom. Control (2018)