Research on Human Upper Limb Tremor Suppression Method Based on Port-Controlled Hamiltonian System and Sliding Mode Control
Authors
Jingjing Li, Zhen Chen, Jian Li, Hongyu Yan, Minshan Feng, Jiawen Zhan
Abstract
No available
Citation
- Journal: 2025 Joint International Conference on Automation-Intelligence-Safety (ICAIS) & International Symposium on Autonomous Systems (ISAS)
- Year: 2025
- Volume:
- Issue:
- Pages: 1–6
- Publisher: IEEE
- DOI: 10.1109/icaisisas64483.2025.11051604
BibTeX
@inproceedings{Li_2025,
title={{Research on Human Upper Limb Tremor Suppression Method Based on Port-Controlled Hamiltonian System and Sliding Mode Control}},
DOI={10.1109/icaisisas64483.2025.11051604},
booktitle={{2025 Joint International Conference on Automation-Intelligence-Safety (ICAIS) & International Symposium on Autonomous Systems (ISAS)}},
publisher={IEEE},
author={Li, Jingjing and Chen, Zhen and Li, Jian and Yan, Hongyu and Feng, Minshan and Zhan, Jiawen},
year={2025},
pages={1--6}
}
References
- Feigin, V. L. et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. International Journal of Stroke 17, 18–29 (2022) – 10.1177/17474930211065917
- Ai, Q., Liu, Z., Meng, W., Liu, Q. & Xie, S. Q. Uncertainty Compensated High-Order Adaptive Iteration Learning Control for Robot-Assisted Upper Limb Rehabilitation. IEEE Trans. Automat. Sci. Eng. 21, 7004–7015 (2024) – 10.1109/tase.2023.3335401
- Gao, Incidence and prognosis of Holmes tremor after stroke. Chinese Journal of Rehabilitation Theory and Practice (2022)
- Kiguchi, K., Hayashi, Y. & Asami, T. An upper-limb power-assist robot with tremor suppression control. 2011 IEEE International Conference on Rehabilitation Robotics 1–4 (2011) doi:10.1109/icorr.2011.5975390 – 10.1109/icorr.2011.5975390
- Jujjavarapu, S. S. & Esfahani, E. T. Improving Stability in Upper Limb Rehabilitation Using Variable Stiffness. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 122–125 (2019) doi:10.1109/embc.2019.8857369 – 10.1109/embc.2019.8857369
- Rashad, R. et al. Energy Aware Impedance Control of a Flying End-Effector in the Port-Hamiltonian Framework. IEEE Trans. Robot. 38, 3936–3955 (2022) – 10.1109/tro.2022.3183532
- Sakata, N., Fujimoto, K. & Maruta, I. Passivity-Based Sliding Mode Control for Mechanical Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 69, 5605–5612 (2024) – 10.1109/tac.2024.3371898
- Fujimoto, K., Sakata, N., Maruta, I. & Ferguson, J. A Passivity Based Sliding Mode Controller for Simple Port-Hamiltonian Systems. IEEE Control Syst. Lett. 5, 839–844 (2021) – 10.1109/lcsys.2020.3005327
- Fujimoto, K., Baba, T., Sakata, N. & Maruta, I. A Passivity-Based Sliding Mode Controller for a Class of Electro-Mechanical Systems. IEEE Control Syst. Lett. 6, 1208–1213 (2022) – 10.1109/lcsys.2021.3089541
- Sakata, N., Fujimoto, K. & Maruta, I. New potential functions for passivity based sliding mode control. IFAC-PapersOnLine 56, 150–155 (2023) – 10.1016/j.ifacol.2023.02.026
- Ferguson, J., Donaire, A. & Middleton, R. H. Kinetic-Potential Energy Shaping for Mechanical Systems With Applications to Tracking. IEEE Control Syst. Lett. 3, 960–965 (2019) – 10.1109/lcsys.2019.2919842
- Venkatraman, A., Ortega, R., Sarras, I. & van der Schaft, A. Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems. IEEE Trans. Automat. Contr. 55, 1059–1074 (2010) – 10.1109/tac.2010.2042010
- Lynch, K. M. & Park, F. C. Modern Robotics. (2017) doi:10.1017/9781316661239 – 10.1017/9781316661239