New potential functions for passivity based sliding mode control
Authors
N. Sakata, K. Fujimoto, I. Maruta
Abstract
Recently, passivity-based sliding mode control has been proposed for mechanical port-Hamiltonian systems. This controller has properties of both sliding mode control and passivity-based control, and Lyapunov stability is ensured by a Hamiltonian function with a non-smooth potential function. In the authors’ previous study, a special form of non-smooth potential function is considered and there are few parameters to adjust the controller for various control objectives. This paper proposes a new passivity-based sliding mode controller based on a wider class of potential functions. This approach enables us to reduce chattering and improve the behavior in reaching mode by adjusting parameters. The effectiveness of the proposed method is demonstrated by a numerical simulation.
Keywords
Variable Structure Control; Sliding Mode; Lyapunov Methods
Citation
- Journal: IFAC-PapersOnLine
- Year: 2023
- Volume: 56
- Issue: 1
- Pages: 150–155
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2023.02.026
- Note: 12th IFAC Symposium on Nonlinear Control Systems NOLCOS 2022- Canberra, Australia, January 4-6, 2023
BibTeX
@article{Sakata_2023,
title={{New potential functions for passivity based sliding mode control}},
volume={56},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2023.02.026},
number={1},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Sakata, N. and Fujimoto, K. and Maruta, I.},
year={2023},
pages={150--155}
}
References
- Ashari, Sliding-mode control of active suspension systems: unit vector approach. (2004)
- Ferguson, J., Donaire, A. & Middleton, R. H. Kinetic-Potential Energy Shaping for Mechanical Systems With Applications to Tracking. IEEE Control Systems Letters vol. 3 960–965 (2019) – 10.1109/lcsys.2019.2919842
- Ferrara, (2019)
- Fujimoto, K., Baba, T., Sakata, N. & Maruta, I. A Passivity-Based Sliding Mode Controller for a Class of Electro-Mechanical Systems. IEEE Control Systems Letters vol. 6 1208–1213 (2022) – 10.1109/lcsys.2021.3089541
- Fujimoto, K., Sakai, S. & Sugie, T. Passivity based control of a class of Hamiltonian systems with nonholonomic constraints. Automatica vol. 48 3054–3063 (2012) – 10.1016/j.automatica.2012.08.032
- Fujimoto, K., Sakata, N., Maruta, I. & Ferguson, J. A Passivity Based Sliding Mode Controller for Simple Port-Hamiltonian Systems. IEEE Control Systems Letters vol. 5 839–844 (2021) – 10.1109/lcsys.2020.3005327
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Levant, A. & Shustin, B. Quasi-Continuous MIMO Sliding-Mode Control. IEEE Transactions on Automatic Control vol. 63 3068–3074 (2018) – 10.1109/tac.2017.2778251
- Moreno, Lyapunov approach for analysis and design of second order sliding mode algorithms. (2011)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Rodríguez, H. & Ortega, R. Stabilization of electromechanical systems via interconnection and damping assignment. International Journal of Robust and Nonlinear Control vol. 13 1095–1111 (2003) – 10.1002/rnc.804
- Romero, J. G., Ortega, R. & Sarras, I. A Globally Exponentially Stable Tracking Controller for Mechanical Systems Using Position Feedback. IEEE Transactions on Automatic Control vol. 60 818–823 (2015) – 10.1109/tac.2014.2330701
- Sakata, N., Fujimoto, K. & Maruta, I. On trajectory tracking control of simple port-Hamiltonian systems based on passivity based sliding mode control. IFAC-PapersOnLine vol. 54 38–43 (2021) – 10.1016/j.ifacol.2021.11.052
- Slotine, (1991)
- Utkin, V. I. & Poznyak, A. S. Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method. Automatica vol. 49 39–47 (2013) – 10.1016/j.automatica.2012.09.008
- Van der Schaft, (2000)
- Venkatraman, A., Ortega, R., Sarras, I. & van der Schaft, A. Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems. IEEE Transactions on Automatic Control vol. 55 1059–1074 (2010) – 10.1109/tac.2010.2042010