Port-Hamiltonian formulation and stabilizing controller for a liquid propelled rocket engine
Authors
Jules Gibart, Hélène Piet-Lahanier, Francois Farago
Abstract
Reusable technology in the field of space launchers requires complex maneuvers to land a launcher first stage, requiring variable thrust from the rocket engine. The developments in electrical actuators allowed the introduction of closed-loop controllers for liquid propelled rocket engines (LPRE). While closed-loop controllers have been suggested in the literature with robustness guarantees, few stability proofs have been given. The LPRE is a complex non-linear system, rendering a direct approach to determine a Lyapunov function complex. In this paper, a reformulation of the state-space equations into a model more adapted to stability analysis is proposed, and a passivity approach is derived to prove the stability. In addition, a closed-loop controller that enforces the passivity of the system is designed, with a new equilibrium assignment. Simulated results illustrate the performances of the closed-loop controlled engine.
Keywords
Liquid propellant rocket engine; Stability analysis; Port-Hamiltonian framework; Non- linear control design
Citation
- Journal: Control Engineering Practice
- Year: 2025
- Volume: 163
- Issue:
- Pages: 106389
- Publisher: Elsevier BV
- DOI: 10.1016/j.conengprac.2025.106389
BibTeX
@article{Gibart_2025,
title={{Port-Hamiltonian formulation and stabilizing controller for a liquid propelled rocket engine}},
volume={163},
ISSN={0967-0661},
DOI={10.1016/j.conengprac.2025.106389},
journal={Control Engineering Practice},
publisher={Elsevier BV},
author={Gibart, Jules and Piet-Lahanier, Hélène and Farago, Francois},
year={2025},
pages={106389}
}
References
- Aoues, S., Cardoso-Ribeiro, F. L., Matignon, D. & Alazard, D. Modeling and Control of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach. IEEE Trans. Contr. Syst. Technol. 27, 355–362 (2019) – 10.1109/tcst.2017.2771244
- Breedveld, (1984)
- Casiano, M. J., Hulka, J. R. & Yang, V. Liquid-Propellant Rocket Engine Throttling: A Comprehensive Review. Journal of Propulsion and Power 26, 897–923 (2010) – 10.2514/1.49791
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica 43, 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Cha, Robust guidance and control of liquid-propellant rocket engines for landing of reusable stages using fuzzy PID control. (2021)
- Dresia, (2021)
- Duindam, (2009)
- Eberard, D. & Maschke, B. Port hamiltonian systems extended to irreversible systems : The example of the heat conduction. IFAC Proceedings Volumes 37, 243–248 (2004) – 10.1016/s1474-6670(17)31230-2
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics 60, 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Esquivel-Sancho, L. M., Muñoz-Arias, M., Phillips-Brenes, H. & Pereira-Arroyo, R. A Reversible Hydropump–Turbine System. Applied Sciences 12, 9086 (2022) – 10.3390/app12189086
- García-Sandoval, J. P., González-Álvarez, V. & Calderón, C. Stability analysis and passivity properties for a class of chemical reactors: Internal entropy production approach. Computers & Chemical Engineering 75, 184–195 (2015) – 10.1016/j.compchemeng.2015.01.021
- Gibart, J., Piet-Lahanier, H., Farago, F. & Galeotta, M. Regulation of a Liquid Propelled Rocket Engine using Contraction Theory. IFAC-PapersOnLine 56, 307–312 (2023) – 10.1016/j.ifacol.2023.02.052
- Khalil, Nonlinear systems. (2002)
- Leparoux, Optimal planetary landing with pointing and glide-slope constraints. (2022)
- Liu, J., Zhang, S., Wei, J. & Haidn, O. J. RANS based numerical simulation of a GCH4/GO2 rocket engine combustion chamber with film cooling and improvement of wall heat flux prediction. Applied Thermal Engineering 219, 119544 (2023) – 10.1016/j.applthermaleng.2022.119544
- Lohmiller, (1999)
- Maschke, Port-controlled Hamiltonian systems: modelling origins and systemtheoretic properties. (1993)
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 53, 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Pasumarthy, A port-Hamiltonian approach to modeling and interconnections of canal systems. (2006)
- Perez Roca, (2020)
- Pérez-Roca, Derivation and analysis of a state-space model for transient control of liquid-propellant rocket engines. (2018)
- Pérez-Roca, S. et al. An MPC Approach to Transient Control of Liquid-Propellant Rocket Engines. IFAC-PapersOnLine 52, 268–273 (2019) – 10.1016/j.ifacol.2019.11.254
- Perez-Roca, S. et al. Model-Based Robust Transient Control of Reusable Liquid-Propellant Rocket Engines. IEEE Trans. Aerosp. Electron. Syst. 57, 129–144 (2021) – 10.1109/taes.2020.3010668
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science 89, 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information 37, 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Wu, Y., Zhang, H., Hui, J. & Zhou, X. Non-fragile H∞ controller for combustion process in rocket motors. IJAAC 12, 381 (2018) – 10.1504/ijaac.2018.092848
- Zhou, Port-Hamiltonian modeling and IDA-pbc control of an IPMC-actuated flexible beam. (2021)