Port‐controlled Hamiltonian‐based controller for an interleaved boost PFC converter
Authors
Kumari Shipra, Rakesh Maurya, Shambhu N. Sharma
Abstract
This study reveals the energy shaping port‐controlled Hamiltonian passivity‐based control (PCH‐PBC) technique for an interleaved boost power factor correction (IBPFC) converter. First, the mathematical modelling of an IBPFC converter is developed under all possible operating modes. Then, the average state‐space model of the system is established with the help of averaging state‐space technique. Further, the PCH technique is applied for controller design and the stability analysis of the proposed system is carried out. A proportional‐integral (PI) controller is integrated with the PCH‐PBC controller to achieve minimum steady‐state errors. Finally, a Simulink model of the proposed system is developed using the Simulink toolbox of MATLAB software and its performances are studied under several operating conditions and verified through experimentation. To assess the system performance in terms of efficiency and input current total harmonic distortion (THD), the comparative study is also carried out under different controllers. Based on the simulation outcomes, the proposed controller is compared with the benchmark PI controller, adaptive passivity‐based controller in terms of different control parameters. The performances of the controller are also investigated against dynamic variations at the input voltage and the load. It is observed that the proposed PCH‐PBC controller achieves robustness against the aforesaid variations.
Citation
- Journal: IET Power Electronics
- Year: 2020
- Volume: 13
- Issue: 16
- Pages: 3627–3636
- Publisher: Institution of Engineering and Technology (IET)
- DOI: 10.1049/iet-pel.2020.0307
BibTeX
@article{Shipra_2020,
title={{Port‐controlled Hamiltonian‐based controller for an interleaved boost PFC converter}},
volume={13},
ISSN={1755-4543},
DOI={10.1049/iet-pel.2020.0307},
number={16},
journal={IET Power Electronics},
publisher={Institution of Engineering and Technology (IET)},
author={Shipra, Kumari and Maurya, Rakesh and Sharma, Shambhu N.},
year={2020},
pages={3627--3636}
}
References
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Sira‐Ramirez H.J., Control design techniques in power electronics devices (2006)
- Czarkowski, D. & Kazimierczuk, M. K. Energy-conservation approach to modeling PWM DC-DC converters. IEEE Trans. Aerosp. Electron. Syst. 29, 1059–1063 (1993) – 10.1109/7.220955
- Martinez, R. & Enjeti, P. N. A high-performance single-phase rectifier with input power factor correction. IEEE Trans. Power Electron. 11, 311–317 (1996) – 10.1109/63.486181
- Mohan N., Power electronics (1995)
- Erickson, R. W. & Maksimović, D. Fundamentals of Power Electronics. (Springer US, 2001). doi:10.1007/b100747 – 10.1007/b100747
- Garcia, O., Cobos, J. A., Prieto, R., Alou, P. & Uceda, J. Single phase power factor correction: a survey. IEEE Trans. Power Electron. 18, 749–755 (2003) – 10.1109/tpel.2003.810856
- Linares-Flores, J., Sira-Ramirez, H., Reger, J. & Hernandez-Marcial, S. A boost unity power factor pre-compensator. 2008 IEEE Power Electronics Specialists Conference 3623–3627 (2008) doi:10.1109/pesc.2008.4592518 – 10.1109/pesc.2008.4592518
- Nussbaumer, T., Raggl, K. & Kolar, J. W. Design Guidelines for Interleaved Single-Phase Boost PFC Circuits. IEEE Trans. Ind. Electron. 56, 2559–2573 (2009) – 10.1109/tie.2009.2020073
- Xu, H., Chen, D., Xue, F. & Li, X. Optimal Design Method of Interleaved Boost PFC for Improving Efficiency from Switching Frequency, Boost Inductor, and Output Voltage. IEEE Trans. Power Electron. 34, 6088–6107 (2019) – 10.1109/tpel.2018.2872427
- Yang, F., Li, C., Cao, Y. & Yao, K. Two-Phase Interleaved Boost PFC Converter With Coupled Inductor Under Single-Phase Operation. IEEE Trans. Power Electron. 35, 169–184 (2020) – 10.1109/tpel.2019.2914532
- Middlebrook, R. D. & Cuk, S. A general unified approach to modelling switching-converter power stages. 1976 IEEE Power Electronics Specialists Conference (1976) doi:10.1109/pesc.1976.7072895 – 10.1109/pesc.1976.7072895
- Sira-Ramirez, H. & deNieto, M. D. A Lagrangian approach to average modeling of pulsewidth-modulation controlled DC-to-DC power converters. IEEE Trans. Circuits Syst. I 43, 427 (1996) – 10.1109/81.502217
- Escobar, G., van der Schaft, A. J. & Ortega, R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica 35, 445–452 (1999) – 10.1016/s0005-1098(98)00196-4
- Sira-Ramirez, H. Nonlinear P-I controller design for switchmode DC-to-DC power converters. IEEE Trans. Circuits Syst. 38, 410–417 (1991) – 10.1109/31.75397
- Lamar, D. G., ZÚÑiga, J. S., Alonso, A. R., GonzÁlez, M. R. & Hernando Álvarez, M. M. A Very Simple Control Strategy for Power Factor Correctors Driving High-Brightness LEDs. IEEE Trans. Power Electron. 24, 2032–2042 (2009) – 10.1109/tpel.2009.2020900
- Liping Guo, Hung, J. Y. & Nelms, R. M. Evaluation of DSP-Based PID and Fuzzy Controllers for DC–DC Converters. IEEE Trans. Ind. Electron. 56, 2237–2248 (2009) – 10.1109/tie.2009.2016955
- Mattavelli, P., Rossetto, L., Spiazzi, G. & Tenti, P. General-purpose fuzzy controller for DC-DC converters. IEEE Trans. Power Electron. 12, 79–86 (1997) – 10.1109/63.554172
- Naik, B. B. & Mehta, A. J. Sliding mode controller with modified sliding function for DC-DC Buck Converter. ISA Transactions 70, 279–287 (2017) – 10.1016/j.isatra.2017.05.009
- Marcos-Pastor, A., Vidal-Idiarte, E., Cid-Pastor, A. & Martinez-Salamero, L. Interleaved Digital Power Factor Correction Based on the Sliding-Mode Approach. IEEE Trans. Power Electron. 31, 4641–4653 (2016) – 10.1109/tpel.2015.2476698
- Sira-Ramirez, H., Perez-Moreno, R. A., Ortega, R. & Garcia-Esteban, M. Passivity-based controllers for the stabilization of Dc-to-Dc Power converters. Automatica 33, 499–513 (1997) – 10.1016/s0005-1098(96)00207-5
- Sira-Ramírez, H., Ortega, R., García-Esteban, M. & Pérez-Moreno, R. Passivity-Based Regulation of a Class of Multivariable DC-to-DC Power Converters. IFAC Proceedings Volumes 29, 7171–7176 (1996) – 10.1016/s1474-6670(17)58838-2
- Komurcugil, H. Improved passivity‐based control method and its robustness analysis for single‐phase uninterruptible power supply inverters. IET Power Electronics 8, 1558–1570 (2015) – 10.1049/iet-pel.2014.0706
- Leyva, R. et al. Passivity-based integral control of a boost converter for large-signal stability. IEE Proc., Control Theory Appl. 153, 139–146 (2006) – 10.1049/ip-cta:20045223
- Hua-Wu, L., Hong-Xing, M., Jian-Feng, J., Xi-Jun, Y. & Xing-Hua, Y. An EL-model based passivity control of four-phase interleaved PFC. Archives of Electrical Engineering 62, 613–628 (2013) – 10.2478/aee-2013-0049
- Escobar, G., Chevreau, D., Ortega, R. & Mendes, E. An adaptive passivity-based controller for a unity power factor rectifier. IEEE Trans. Contr. Syst. Technol. 9, 637–644 (2001) – 10.1109/87.930975
- Seleme, S. I., Jr., Rosa, A. H. R., Morais, L. M. F., Donoso-Garcia, P. F. & Cortizo, P. C. Evaluation of adaptive passivity-based controller for power factor correction using a boost converter. IET Control Theory Appl. 6, 2168–2178 (2012) – 10.1049/iet-cta.2011.0218
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Guo X., Proc. of IEEE 33rd Int. Telecommunications Energy Conf. (2011)
- Wang, B. & Ma, Y. Research on the passivity-based control strategy of Buck-Boost converters with a wide input power supply range. The 2nd International Symposium on Power Electronics for Distributed Generation Systems 304–308 (2010) doi:10.1109/pedg.2010.5545830 – 10.1109/pedg.2010.5545830
- Zeng, J., Zhang, Z. & Qiao, W. An Interconnection and Damping Assignment Passivity-Based Controller for a DC–DC Boost Converter With a Constant Power Load. IEEE Trans. on Ind. Applicat. 50, 2314–2322 (2014) – 10.1109/tia.2013.2290872
- Shipra, K., Sharma, S. N. & Maurya, R. A Study of Passivity Based Controllers for Switched Electrical Network. 2019 IEEE 1st International Conference on Energy, Systems and Information Processing (ICESIP) 1–6 (2019) doi:10.1109/icesip46348.2019.8938388 – 10.1109/icesip46348.2019.8938388
- Yu, H., Teng, Z., Yu, J. & Zang, Y. Energy-shaping and passivity-based control of three-phase PWM rectifiers. Proceedings of the 10th World Congress on Intelligent Control and Automation 2844–2848 (2012) doi:10.1109/wcica.2012.6358355 – 10.1109/wcica.2012.6358355
- Meshram, R. V. et al. Port-Controlled Phasor Hamiltonian Modeling and IDA-PBC Control of Solid-State Transformer. IEEE Trans. Contr. Syst. Technol. 27, 161–174 (2019) – 10.1109/tcst.2017.2761866
- Pang, S. et al. Interconnection and Damping Assignment Passivity-Based Control Applied to On-Board DC–DC Power Converter System Supplying Constant Power Load. IEEE Trans. on Ind. Applicat. 55, 6476–6485 (2019) – 10.1109/tia.2019.2938149
- Pang, S. et al. Improving the Stability of Cascaded DC-DC Converter Systems via the Viewpoints of Passivity-Based Control and Port-Controlled Hamiltonian Framework. 2019 IEEE Industry Applications Society Annual Meeting 1–6 (2019) doi:10.1109/ias.2019.8911961 – 10.1109/ias.2019.8911961
- Khalil H.K., Nonlinear systems (2006)
- Mak, F., Sundaram, R., Santhaseelan, V. & Tandle, S. Laboratory set-up for real-time study of electric drives with integrated interfaces for test and measurement. 2008 38th Annual Frontiers in Education Conference T3H-1-T3H-6 (2008) doi:10.1109/fie.2008.4720340 – 10.1109/fie.2008.4720340
- Seborg D.E., Process dynamics and control (2015)