Passivity-based Trajectory-tracking for Marine Craft with Disturbance Rejection
Authors
Alejandro Donaire, Jose Guadalupe Romero, Tristan Perez
Abstract
This paper presents a Hamiltonian model of marine vehicle dynamics in six degrees of freedom in both body-fixed and inertial momentum coordinates. The model in body-fixed coordinates presents a particular structure of the mass matrix that allows the adaptation and application of passivity-based control interconnection and damping assignment design methodologies developed for robust stabilisation of mechanical systems in terms of generalised coordinates. As an example of application, we follow this methodology to design a passivity-based tracking controller with integral action for fully actuated vehicles in six degrees of freedom. We also describe a momentum transformation that allows an alternative model representation that resembles general port-Hamiltonian mechanical systems with a coordinate dependent mass matrix. This can be seen as an enabling step towards the adaptation of the theory of control of port-Hamiltonian systems developed in robotic manipulators and multi-body mechanical systems to the case of marine craft dynamics.
Keywords
Marine systems; Port-Hamiltonian Systems; Nonlinear control
Citation
- Journal: IFAC-PapersOnLine
- Year: 2015
- Volume: 48
- Issue: 16
- Pages: 19–24
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2015.10.252
- Note: 10th IFAC Conference on Manoeuvring and Control of Marine Craft MCMC 2015- Copenhagen, 24–26 August 2015
BibTeX
@article{Donaire_2015,
title={{Passivity-based Trajectory-tracking for Marine Craft with Disturbance Rejection}},
volume={48},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2015.10.252},
number={16},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Donaire, Alejandro and Guadalupe Romero, Jose and Perez, Tristan},
year={2015},
pages={19--24}
}
References
- Astolfi, A., Chhabra, D. & Ortega, R. Asymptotic stabilization of some equilibria of an underactuated underwater vehicle. Systems & Control Letters vol. 45 193–206 (2002) – 10.1016/s0167-6911(01)00176-1
- Donaire, A. & Perez, T. Port-Hamiltonian Theory of Motion Control for Marine Craft. IFAC Proceedings Volumes vol. 43 201–206 (2010) – 10.3182/20100915-3-de-3008.00054
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica vol. 48 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- Fossen, T. I. Handbook of Marine Craft Hydrodynamics and Motion Control. (2011) doi:10.1002/9781119994138 – 10.1002/9781119994138
- Fossen, T. I. & Berge, S. P. Nonlinear vectorial backstepping design for global exponential tracking of marine vessels in the presence of actuator dynamics. Proceedings of the 36th IEEE Conference on Decision and Control vol. 5 4237–4242 – 10.1109/cdc.1997.649499
- Greenwood, (2003)
- Khalil, (2000)
- Ortega, (1998)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Romero, J. G., Navarro-Alarcon, D. & Panteley, E. Robust globally exponentially stable control for mechanical systems in free/constrained-motion tasks. 52nd IEEE Conference on Decision and Control 3067–3072 (2013) doi:10.1109/cdc.2013.6760350 – 10.1109/cdc.2013.6760350
- Romero, J. G., Donaire, A. & Ortega, R. Robust energy shaping control of mechanical systems. Systems & Control Letters vol. 62 770–780 (2013) – 10.1016/j.sysconle.2013.05.011
- Sørensen, A. J. & Egeland, O. Design of ride control system for surface effect ships using dissipative control. Automatica vol. 31 183–199 (1995) – 10.1016/0005-1098(94)00090-6
- Valentinis, F., Donaire, A. & Perez, T. Control of an underactuated-slender-hull unmanned underwater vehicle using Port-Hamiltonian theory. 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics 1546–1551 (2013) doi:10.1109/aim.2013.6584315 – 10.1109/aim.2013.6584315
- van der Schaft, (2000)
- van der Schaft, Port-Hamiltonian systems: an introductory survey. Proceeding of the International Congress ofMathematicians (2006)
- Venkatraman, A., Ortega, R., Sarras, I. & van der Schaft, A. Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems. IEEE Transactions on Automatic Control vol. 55 1059–1074 (2010) – 10.1109/tac.2010.2042010
- A. Woolsey, C. & E. Leonard, N. Stabilizing underwater vehicle motion using internal rotors. Automatica vol. 38 2053–2062 (2002) – 10.1016/s0005-1098(02)00136-x