Control of an underactuated-slender-hull unmanned underwater vehicle using Port-Hamiltonian theory
Authors
Francis Valentinis, Alejandro Donaire, Tristan Perez
Abstract
This paper presents a control design for tracking of attitude and speed of an underactuated slender-hull unmanned underwater vehicle (UUV). The control design is based on Port-Hamiltonian theory. The target dynamics (desired dynamic response) is shaped with particular attention to the target mass matrix so that the influence of the unactuated dynamics on the controlled system is suppressed. This results in achievable dynamics independent of uncontrolled states. Throughout the design, insight of the physical phenomena involved is used to propose the desired target dynamics. The performance of the design is demonstrated through simulation with a high-fidelity model.
Citation
- Journal: 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
- Year: 2013
- Volume:
- Issue:
- Pages: 1546–1551
- Publisher: IEEE
- DOI: 10.1109/aim.2013.6584315
BibTeX
@inproceedings{Valentinis_2013,
title={{Control of an underactuated-slender-hull unmanned underwater vehicle using Port-Hamiltonian theory}},
DOI={10.1109/aim.2013.6584315},
booktitle={{2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics}},
publisher={IEEE},
author={Valentinis, Francis and Donaire, Alejandro and Perez, Tristan},
year={2013},
pages={1546--1551}
}
References
- donaire, Manoeuvring control of fullyactuated marine vehicles-A port-Hamiltonian system approach to tracking. The Australian Control Conference AUCC Melbourne Victoria (2011)
- Prestero, T. Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle. (2001) doi:10.1575/1912/3040 – 10.1575/1912/3040
- egeland, Modeling and Simulation for Automatic Control (2002)
- Leonard, N. E. Stability of a bottom-heavy underwater vehicle. Automatica 33, 331–346 (1997) – 10.1016/s0005-1098(96)00176-8
- Brogliato, B., Maschke, B., Lozano, R. & Egeland, O. Dissipative Systems Analysis and Control. Communications and Control Engineering (Springer London, 2007). doi:10.1007/978-1-84628-517-2 – 10.1007/978-1-84628-517-2
- Fossen, T. I. Handbook of Marine Craft Hydrodynamics and Motion Control. (2011) doi:10.1002/9781119994138 – 10.1002/9781119994138
- Astolfi, A., Chhabra, D. & Ortega, R. Asymptotic stabilization of some equilibria of an underactuated underwater vehicle. Systems & Control Letters 45, 193–206 (2002) – 10.1016/s0167-6911(01)00176-1
- perez, Port-hamiltonian control of fully actuated underwater vehicles, ser. Control Engineering The Institution of Engineering and Technology (IET) (2012)
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica 48, 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- gertler, Standard equations of motion for submarine simulation. David Taylor Naval Ship Research and Development Center (2510)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- schaft der a van, L2-Gain and Passivity Techniques in Nonlinear Control Ser Communications and Control Engineering (2000)
- Astolfi, A., Karagiannis, D. & Ortega, R. Nonlinear and Adaptive Control with Applications. Communications and Control Engineering (Springer London, 2008). doi:10.1007/978-1-84800-066-7 – 10.1007/978-1-84800-066-7
- schaft der a van, Port-hamiltonian systems: An introductory survey. Proc Int Congr Mathematicians (2006)