Passivity-Based Tracking Controllers for Mechanical Systems with Active Disturbance Rejection
Authors
Jose Guadalupe Romero, Alejandro Donaire, David Navarro-Alarcon, Victor Ramirez
Abstract
The main purpose of this paper is to investigate the robustness of tracking controllers for mechanical systems vis—à—vis external disturbances. The controllers designed are obtained by modifying a change of coordinates recently proposed for robust energy shaping controller. This type of change of coordinates allows to assign damping in all the states when the closed loop is written in port{Hamiltonian form. This feature simplify the stability analysis by ensure that the Hamiltonian function is a strict Lyapunov function of the closed loop. Moreover, robustness of the closed loop against external disturbances is ensured. This result is also extended for mechanical systems interacting with elastic environments and linear deformation. The robust properties are preserved adding terms in the control law via the new change of coordinates.
Keywords
Passivity-based control; Trajectory tracking; Mechanical systems; Robust stabilization
Citation
- Journal: IFAC-PapersOnLine
- Year: 2015
- Volume: 48
- Issue: 13
- Pages: 129–134
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2015.10.226
- Note: 5th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2015- Lyon, France, 4–7 July 2015
BibTeX
@article{Romero_2015,
title={{Passivity-Based Tracking Controllers for Mechanical Systems with Active Disturbance Rejection}},
volume={48},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2015.10.226},
number={13},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Romero, Jose Guadalupe and Donaire, Alejandro and Navarro-Alarcon, David and Ramirez, Victor},
year={2015},
pages={129--134}
}
References
- Arimoto, S., Han, H.-Y., Cheah, C. C. & Kawamura, S. Extension of impedance matching to nonlinear dynamics of robotic tasks. Systems & Control Letters vol. 36 109–119 (1999) – 10.1016/s0167-6911(98)00084-x
- Baspiner, On robust position/force control of robot manipulators with constraint uncertainties,. 10th IFAC Symposium on Robot Control (2012)
- Chian-Song, Robust adaptive motion/force tracking control design for uncertain constrained robot manipulators,. Automatica (2004)
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica vol. 45 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- Donaire, Manoeuvring control of fully-actuated marine vehicles. A Port-Hamiltonian system approach to tracking,. Australian Control Conference (2011)
- Doulgeri, Force position control for a robot finger with a soft tip and kinematic uncertainties,. Robotics and Autonomous Systems (2011)
- Duindam, V. & Stramigioli, S. Port-Based Asymptotic Curve Tracking for Mechanical Systems. European Journal of Control vol. 10 411–420 (2004) – 10.3166/ejc.10.411-420
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Khalil., (1994)
- Lancaster, (1985)
- Murray, (1994)
- Navarro-Alarcon, D., Liu, Y.-H., Romero, J. G. & Li, P. Energy Shaping Methods for Asymptotic Force Regulation of Compliant Mechanical Systems. IEEE Transactions on Control Systems Technology vol. 22 2376–2383 (2014) – 10.1109/tcst.2014.2309659
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Euler-Lagrange systems. Communications and Control Engineering 15–37 (1998) doi:10.1007/978-1-4471-3603-3_2 – 10.1007/978-1-4471-3603-3_2
- Ortega, R. & Romero, J. G. Robust integral control of port-Hamiltonian systems: The case of non-passive outputs with unmatched disturbances. Systems & Control Letters vol. 61 11–17 (2012) – 10.1016/j.sysconle.2011.09.015
- Raibert, M. H. & Craig, J. J. Hybrid Position/Force Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control vol. 103 126–133 (1981) – 10.1115/1.3139652
- Romero, J. G., Donaire, A. & Ortega, R. Robust energy shaping control of mechanical systems. Systems & Control Letters vol. 62 770–780 (2013) – 10.1016/j.sysconle.2013.05.011
- Romero, J. G., Navarro-Alarcon, D. & Panteley, E. Robust globally exponentially stable control for mechanical systems in free/constrained-motion tasks. 52nd IEEE Conference on Decision and Control 3067–3072 (2013) doi:10.1109/cdc.2013.6760350 – 10.1109/cdc.2013.6760350
- Romero, J. G., Ortega, R. & Sarras, I. A Globally Exponentially Stable Tracking Controller for Mechanical Systems Using Position Feedback. IEEE Transactions on Automatic Control vol. 60 818–823 (2015) – 10.1109/tac.2014.2330701
- Roy, J. & Whitcomb, L. L. Adaptive force control of position/velocity controlled robots: theory and experiment. IEEE Transactions on Robotics and Automation vol. 18 121–137 (2002) – 10.1109/tra.2002.999642
- Sandoval, Interconnection and Damping Assignment Passivity-Based Control of the Pendubot,. Proc; of the 17th World Congress, International Federation of Automatic Control (2008)
- Sontag, Input-to-state stability: basic concepts and results,. (2007)
- Van der Schaft, (1999)
- Venkatraman, A., Ortega, R., Sarras, I. & van der Schaft, A. Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems. IEEE Transactions on Automatic Control vol. 55 1059–1074 (2010) – 10.1109/tac.2010.2042010
- Yao, B. & Tomizuka, M. Adaptive Robust Motion and Force Tracking Control of Robot Manipulators in Contact With Compliant Surfaces With Unknown Stiffness. Journal of Dynamic Systems, Measurement, and Control vol. 120 232–240 (1998) – 10.1115/1.2802414