Partitioned Finite Element Method for the Mindlin Plate as a Port-Hamiltonian system
Authors
Andrea Brugnoli, Daniel Alazard, Valérie Pommier-Budinger, Denis Matignon
Abstract
The port-Hamiltonian framework allows for a structured representation and interconnection of distributed parameter systems described by Partial Differential Equations (PDE) from different realms. Here, the Mindlin-Reissner model of a thick plate is presented in a tensorial formulation. Taking into account collocated boundary control and observation gives rise to an infinite-dimensional port-Hamiltonian system (pHs). The Partitioned Finite Element Method (PFEM), already presented in our previous work, allows obtaining a structure-preserving finite-dimensional port-Hamiltonian system, and accounting for boundary control in a straightforward manner. In order to illustrate the flexibility of PFEM, both types of boundary controls can be dealt with: either through forces and momenta, or through kinematic variables. The discrete model is easily implementable by using the FEniCS platform. Computation of eigenfrequencies and vibration modes, together with time-domain simulation results demonstrate the consistency of the proposed approach.
Keywords
Port-Hamiltonian systems (pHs); Geometric Discretization; Mindlin-Reissner Plate; Partitioned Finite Element Method (PFEM); Symplectic Integration
Citation
- Journal: IFAC-PapersOnLine
- Year: 2019
- Volume: 52
- Issue: 2
- Pages: 88–95
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2019.08.016
- Note: 3rd IFAC Workshop on Control of Systems Governed by Partial Differential Equations CPDE 2019- Oaxaca, Mexico, 20–24 May 2019
BibTeX
@article{Brugnoli_2019,
title={{Partitioned Finite Element Method for the Mindlin Plate as a Port-Hamiltonian system}},
volume={52},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2019.08.016},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Brugnoli, Andrea and Alazard, Daniel and Pommier-Budinger, Valérie and Matignon, Denis},
year={2019},
pages={88--95}
}
References
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Dawe, D. J. & Roufaeil, O. L. Rayleigh-Ritz vibration analysis of Mindlin plates. Journal of Sound and Vibration vol. 69 345–359 (1980) – 10.1016/0022-460x(80)90477-0
- Duindam, (2009)
- Durán, R., Hervella-Nieto, L., Liberman, E., Hervella-Nieto, L. & Solomin, J. Approximation of the vibration modes of a plate by Reissner-Mindlin equations. Mathematics of Computation vol. 68 1447–1463 (1999) – 10.1090/s0025-5718-99-01094-7
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Grinfeld, (2015)
- Huang, H. C. & Hinton, E. A nine node Lagrangian Mindlin plate element with enhanced shear interpolation. Engineering Computations vol. 1 369–379 (1984) – 10.1108/eb023593
- Jacob, (2012)
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Kurula, Linear wave systems on n-d spatial domains. International Journal of Control (2015)
- Logg, (2012)
- Mindlin, R. D. Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates. Journal of Applied Mechanics vol. 18 31–38 (1951) – 10.1115/1.4010217
- Moulla, R., Lefévre, L. & Maschke, B. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws. Journal of Computational Physics vol. 231 1272–1292 (2012) – 10.1016/j.jcp.2011.10.008
- Seslija, M., van der Schaft, A. & Scherpen, J. M. A. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems. Journal of Geometry and Physics vol. 62 1509–1531 (2012) – 10.1016/j.geomphys.2012.02.006
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- van der Schaft, Port-Hamiltonian differential-algebraic systems. (2013)