On the tuning of a nonlinear energy‐based regulator for the positioning of a fully actuated surface marine craft
Authors
Christina Kazantzidou, Tristan Perez, Francis Valentinis, Alejandro Donaire
Abstract
The authors address the problem of tuning a non‐linear energy‐based regulator for the positioning of a surface marine craft. Interconnection and damping assignment passivity‐based control (IDA‐PBC) is used for the control design, resulting in passive target dynamics that can be expressed as a port‐Hamiltonian system (PHS). The IDA‐PBC methodology has been successfully utilised in several applications, however, there has been minimal development in tuning methods that can analytically assist the designer to achieve desired response characteristics. It is demonstrated that eigenvalue assignment of the linearised target dynamics in PHS form can significantly aid the tuning process. Based on this analysis, the authors propose a systematic tuning approach to achieve certain performance and response characteristics. A comprehensive demonstration of the proposed tuning method is provided for the position regulation of an underwater vehicle in the horizontal plane in a case study, where numerical analysis of robustness is also conducted.
Citation
- Journal: IET Control Theory & Applications
- Year: 2021
- Volume: 15
- Issue: 6
- Pages: 850–860
- Publisher: Institution of Engineering and Technology (IET)
- DOI: 10.1049/cth2.12087
BibTeX
@article{Kazantzidou_2021,
title={{On the tuning of a nonlinear energy‐based regulator for the positioning of a fully actuated surface marine craft}},
volume={15},
ISSN={1751-8652},
DOI={10.1049/cth2.12087},
number={6},
journal={IET Control Theory & Applications},
publisher={Institution of Engineering and Technology (IET)},
author={Kazantzidou, Christina and Perez, Tristan and Valentinis, Francis and Donaire, Alejandro},
year={2021},
pages={850--860}
}
References
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica vol. 48 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- Perez, T., Donaire, A., Renton, C. & Valentinis, F. Energy-based Motion Control of Marine Vehicles using Interconnection and Damping Assignment Passivity-based Control – A Survey. IFAC Proceedings Volumes vol. 46 316–327 (2013) – 10.3182/20130918-4-jp-3022.00072
- Valentinis, F., Donaire, A. & Perez, T. Energy-based motion control of a slender hull unmanned underwater vehicle. Ocean Engineering vol. 104 604–616 (2015) – 10.1016/j.oceaneng.2015.05.014
- A. Woolsey, C. & E. Leonard, N. Stabilizing underwater vehicle motion using internal rotors. Automatica vol. 38 2053–2062 (2002) – 10.1016/s0005-1098(02)00136-x
- Donaire, A. & Perez, T. Port-Hamiltonian Theory of Motion Control for Marine Craft. IFAC Proceedings Volumes vol. 43 201–206 (2010) – 10.3182/20100915-3-de-3008.00054
- Valentinis, F., Donaire, A. & Perez, T. Energy-based guidance of an underactuated unmanned underwater vehicle on a helical trajectory. Control Engineering Practice vol. 44 138–156 (2015) – 10.1016/j.conengprac.2015.07.010
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Kotyczka, P. Local linear dynamics assignment in IDA-PBC. Automatica vol. 49 1037–1044 (2013) – 10.1016/j.automatica.2013.01.028
- Kazantzidou, C., Perez, T. & Valentinis, F. Eigenstructure assignment for the position regulation of a fully-actuated marine craft. IFAC-PapersOnLine vol. 50 12398–12403 (2017) – 10.1016/j.ifacol.2017.08.2506
- Nichols, N. K. & Kautsky, J. Robust Eigenstructure Assignment in Quadratic Matrix Polynomials: Nonsingular Case. SIAM Journal on Matrix Analysis and Applications vol. 23 77–102 (2001) – 10.1137/s0895479899362867
- Simon H.A.. The Sciences of the Artificial (1996)
- Muhammad, S. & Dòria-Cerezo, A. Passivity-based control applied to the dynamic positioning of ships. IET Control Theory & Applications vol. 6 680–688 (2012) – 10.1049/iet-cta.2010.0554
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- van der Schaft, A. Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–1365 (2007) doi:10.4171/022-3/65 – 10.4171/022-3/65
- Fossen T.I.. Marine Control Systems: Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles (2002)
- Fossen, T. I. Handbook of Marine Craft Hydrodynamics and Motion Control. (2011) doi:10.1002/9781119994138 – 10.1002/9781119994138
- Khalil H.K.. Nonlinear Systems (2002)
- Branicky, M. S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transactions on Automatic Control vol. 43 475–482 (1998) – 10.1109/9.664150
- Liberzon, D. Switching in Systems and Control. Systems & Control: Foundations & Applications (Birkhäuser Boston, 2003). doi:10.1007/978-1-4612-0017-8 – 10.1007/978-1-4612-0017-8
- Zhao, J. & Hill, D. J. Passivity and stability of switched systems: A multiple storage function method. Systems & Control Letters vol. 57 158–164 (2008) – 10.1016/j.sysconle.2007.08.011
- Leonessa A.. Hierarchical Nonlinear Switching Control Design with Applications to Propulsion Systems (2000)
- Leonessa, A., Haddad, W. M. & Chellaboina, V. S. Nonlinear system stabilization via hierarchical switching control. IEEE Transactions on Automatic Control vol. 46 17–28 (2001) – 10.1109/9.898692
- Skogestad S.. Multivariable Feedback Control: Analysis and Design (2005)
- Lewis, F. L., Vrabie, D. L. & Syrmos, V. L. Optimal Control. (2012) doi:10.1002/9781118122631 – 10.1002/9781118122631