Energy-based motion control of a slender hull unmanned underwater vehicle
Authors
Francis Valentinis, Alejandro Donaire, Tristan Perez
Abstract
This paper presents a motion control system for tracking of attitude and speed of an underactuated slender-hull unmanned underwater vehicle. The feedback control strategy is developed using the Port-Hamiltonian theory. By shaping of the target dynamics (desired dynamic response in closed loop) with particular attention to the target mass matrix, the influence of the unactuated dynamics on the controlled system is suppressed. This results in achievable dynamics independent of stable uncontrolled states. Throughout the design, the insight of the physical phenomena involved is used to propose the desired target dynamics. Integral action is added to the system for robustness and to reject steady disturbances. This is achieved via a change of coordinates that result in input-to-state stable (ISS) target dynamics. As a final step in the design, an anti-windup scheme is implemented to account for limited actuator capacity, namely saturation. The performance of the design is demonstrated through simulation with a high-fidelity model.
Keywords
Unmanned underwater vehicle; Nonlinear systems; Energy-based control; Port-Hamiltonian systems
Citation
- Journal: Ocean Engineering
- Year: 2015
- Volume: 104
- Issue:
- Pages: 604–616
- Publisher: Elsevier BV
- DOI: 10.1016/j.oceaneng.2015.05.014
BibTeX
@article{Valentinis_2015,
title={{Energy-based motion control of a slender hull unmanned underwater vehicle}},
volume={104},
ISSN={0029-8018},
DOI={10.1016/j.oceaneng.2015.05.014},
journal={Ocean Engineering},
publisher={Elsevier BV},
author={Valentinis, Francis and Donaire, Alejandro and Perez, Tristan},
year={2015},
pages={604--616}
}
References
- Astolfi, A., Chhabra, D. & Ortega, R. Asymptotic stabilization of some equilibria of an underactuated underwater vehicle. Systems & Control Letters vol. 45 193–206 (2002) – 10.1016/s0167-6911(01)00176-1
- Astolfi, (2008)
- Brogliato, (2007)
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica vol. 45 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica vol. 48 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- Fossen, (1994)
- Fossen, (2011)
- From, P. J., Pettersen, K. Y. & Gravdahl, J. T. Singularity-Free Dynamic Equations of AUV-Manipulator Systems. IFAC Proceedings Volumes vol. 43 31–36 (2010) – 10.3182/20100906-3-it-2019.00008
- Gertler, M. & Hagen, G. R. STANDARD EQUATIONS OF MOTION FOR SUBMARINE SIMULATION. http://dx.doi.org/10.21236/AD0653861 (1967) doi:10.21236/ad0653861 – 10.21236/ad0653861
- Lanczos, (1960)
- Morabito, F., Teel, A. R. & Zaccarian, L. Nonlinear Antiwindup Applied to Euler–Lagrange Systems. IEEE Transactions on Robotics and Automation vol. 20 526–537 (2004) – 10.1109/tra.2004.824933
- Ortega, R. & Romero, J. G. Robust integral control of port-Hamiltonian systems: The case of non-passive outputs with unmatched disturbances. Systems & Control Letters vol. 61 11–17 (2012) – 10.1016/j.sysconle.2011.09.015
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Prestero, T. Verification of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle. (2001) doi:10.1575/1912/3040 – 10.1575/1912/3040
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Woolsey, C. A. & Techy, L. Cross-track control of a slender, underactuated AUV using potential shaping. Ocean Engineering vol. 36 82–91 (2009) – 10.1016/j.oceaneng.2008.07.010