Energy-based guidance of an underactuated unmanned underwater vehicle on a helical trajectory
Authors
Francis Valentinis, Alejandro Donaire, Tristan Perez
Abstract
This paper presents a motion control system for guidance of an underactuated Unmanned Underwater Vehicle (UUV) on a helical trajectory. The control strategy is developed using Port-Hamiltonian theory and interconnection and damping assignment passivity-based control. Using energy routing, the trajectory of a virtual fully actuated plant is guided onto a vector field. A tracking controller is then used that commands the underactuated plant to follow the velocity of the virtual plant. An integral control is inserted between the two control layers, which adds robustness and disturbance rejection to the design.
Keywords
Unmanned underwater vehicle; Guidance; Energy routing; Nonlinear systems; Energy-based control; Port-Hamiltonian systems
Citation
- Journal: Control Engineering Practice
- Year: 2015
- Volume: 44
- Issue:
- Pages: 138–156
- Publisher: Elsevier BV
- DOI: 10.1016/j.conengprac.2015.07.010
BibTeX
@article{Valentinis_2015,
title={{Energy-based guidance of an underactuated unmanned underwater vehicle on a helical trajectory}},
volume={44},
ISSN={0967-0661},
DOI={10.1016/j.conengprac.2015.07.010},
journal={Control Engineering Practice},
publisher={Elsevier BV},
author={Valentinis, Francis and Donaire, Alejandro and Perez, Tristan},
year={2015},
pages={138--156}
}
References
- Astolfi, A., Chhabra, D. & Ortega, R. Asymptotic stabilization of some equilibria of an underactuated underwater vehicle. Systems & Control Letters vol. 45 193–206 (2002) – 10.1016/s0167-6911(01)00176-1
- Brogliato, (2007)
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica vol. 45 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- Donaire, A. & Perez, T. Port-Hamiltonian Theory of Motion Control for Marine Craft. IFAC Proceedings Volumes vol. 43 201–206 (2010) – 10.3182/20100915-3-de-3008.00054
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica vol. 48 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- Egeland, (2002)
- Faltinsen, (1990)
- Fossen, (1994)
- Fossen, (2011)
- From, P. J., Pettersen, K. Y. & Gravdahl, J. T. Singularity-Free Dynamic Equations of AUV-Manipulator Systems. IFAC Proceedings Volumes vol. 43 31–36 (2010) – 10.3182/20100906-3-it-2019.00008
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Gertler, M. & Hagen, G. R. STANDARD EQUATIONS OF MOTION FOR SUBMARINE SIMULATION. http://dx.doi.org/10.21236/AD0653861 (1967) doi:10.21236/ad0653861 – 10.21236/ad0653861
- Hogan, N. Impedance Control: An Approach to Manipulation: Part I—Theory. Journal of Dynamic Systems, Measurement, and Control vol. 107 1–7 (1985) – 10.1115/1.3140702
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Salisbury, J. Active stiffness control of a manipulator in cartesian coordinates. 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes (1980) doi:10.1109/cdc.1980.272026 – 10.1109/cdc.1980.272026
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Takegaki, M. & Arimoto, S. A New Feedback Method for Dynamic Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control vol. 103 119–125 (1981) – 10.1115/1.3139651
- Valentinis, F., Donaire, A. & Perez, T. Energy-based motion control of a slender hull unmanned underwater vehicle. Ocean Engineering vol. 104 604–616 (2015) – 10.1016/j.oceaneng.2015.05.014