On the effects of desired damping matrix and desired Hamiltonian function in the matching equation for Port–Hamiltonian systems
Authors
Liangcheng Cai, Yong He, Min Wu
Abstract
This paper investigates the effects of desired damping matrix and desired Hamiltonian function in the matching equation for Port–Hamiltonian (PH) systems. Once the desired Hamiltonian function is chosen, if the desired damping matrix is large enough, the convergence speed of the control law asymptotically stabilizing the PH system works more quickly. On the other hand, the desired Hamiltonian function can be replaced by a new desired energy function, which is also effective in energy-shaping. Finally, a three-phase synchronous generator example is given to show the correctness of the above contents.
Keywords
Port–Hamiltonian systems; Desired damping matrix; Matching equations; Convergence speed
Citation
- Journal: Nonlinear Dynamics
- Year: 2013
- Volume: 72
- Issue: 1-2
- Pages: 91–99
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s11071-012-0693-7
BibTeX
@article{Cai_2012,
title={{On the effects of desired damping matrix and desired Hamiltonian function in the matching equation for Port–Hamiltonian systems}},
volume={72},
ISSN={1573-269X},
DOI={10.1007/s11071-012-0693-7},
number={1–2},
journal={Nonlinear Dynamics},
publisher={Springer Science and Business Media LLC},
author={Cai, Liangcheng and He, Yong and Wu, Min},
year={2012},
pages={91--99}
}
References
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Ortega, R., Jeltsema, D. & Scherpen, J. M. A. Power shaping: A new paradigm for stabilization of nonlinear RLC circuits. IEEE Transactions on Automatic Control vol. 48 1762–1767 (2003) – 10.1109/tac.2003.817918
- García-Canseco, E., Jeltsema, D., Ortega, R. & Scherpen, J. M. A. Power-based control of physical systems. Automatica vol. 46 127–132 (2010) – 10.1016/j.automatica.2009.10.012
- Xi, Z. & Cheng, D. Passivity-based stabilization and H 8 control of the Hamiltonian control systems with dissipation and its applications to power systems. International Journal of Control vol. 73 1686–1691 (2000) – 10.1080/00207170050201762
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica vol. 45 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- Astolfi, A., Ortega, R. & Venkatraman, A. A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holonomic constraints. Automatica vol. 46 182–189 (2010) – 10.1016/j.automatica.2009.10.027
- Venkatraman, A., Ortega, R., Sarras, I. & van der Schaft, A. Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems. IEEE Transactions on Automatic Control vol. 55 1059–1074 (2010) – 10.1109/tac.2010.2042010
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Jeltsema, D., Ortega, R. & M.A. Scherpen, J. An energy-balancing perspective of interconnection and damping assignment control of nonlinear systems. Automatica vol. 40 1643–1646 (2004) – 10.1016/j.automatica.2004.04.007
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control vol. 47 1218–1233 (2002) – 10.1109/tac.2002.800770
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Castaños, F. & Ortega, R. Energy-balancing passivity-based control is equivalent to dissipation and output invariance. Systems & Control Letters vol. 58 553–560 (2009) – 10.1016/j.sysconle.2009.03.007
- Ramírez, H., Sbarbaro, D. & Ortega, R. On the control of non-linear processes: An IDA–PBC approach. Journal of Process Control vol. 19 405–414 (2009) – 10.1016/j.jprocont.2008.06.018
- Macchelli, A. Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation. Systems & Control Letters vol. 60 579–589 (2011) – 10.1016/j.sysconle.2011.04.016
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica vol. 46 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- Ortega, R. & Romero, J. G. Robust integral control of port-Hamiltonian systems: The case of non-passive outputs with unmatched disturbances. Systems & Control Letters vol. 61 11–17 (2012) – 10.1016/j.sysconle.2011.09.015
- Polyuga, R. V. & van der Schaft, A. J. Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Systems & Control Letters vol. 61 412–421 (2012) – 10.1016/j.sysconle.2011.12.008
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8