On Matched Disturbance Suppression for Port-Hamiltonian Systems
Authors
Joel Ferguson, Dongjun Wu, Romeo Ortega
Abstract
In this letter, we consider the robustification of port-Hamiltonian systems with respect to matched time-varying disturbances generated by an exo-system, which is assumed to be known. This letter is an extension, to the case of time-varying disturbances, of recent integral action techniques, which are able to reject constant disturbances only. The approach is then extended to the special case of sinusoidal disturbances with unknown frequency. The main results of this letter are demonstrated on a 2 degree-of-freedom robotic manipulator.
Citation
- Journal: IEEE Control Systems Letters
- Year: 2020
- Volume: 4
- Issue: 4
- Pages: 892–897
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/lcsys.2020.2994262
BibTeX
@article{Ferguson_2020,
title={{On Matched Disturbance Suppression for Port-Hamiltonian Systems}},
volume={4},
ISSN={2475-1456},
DOI={10.1109/lcsys.2020.2994262},
number={4},
journal={IEEE Control Systems Letters},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Ferguson, Joel and Wu, Dongjun and Ortega, Romeo},
year={2020},
pages={892--897}
}
References
- Astolfi, A., Isidori, A. & Marconi, L. A Note on Disturbance Suppression for Hamiltonian Systems by State Feedback. IFAC Proceedings Volumes vol. 36 211–216 (2003) – 10.1016/s1474-6670(17)38893-6
- Gentili, L. & van der Schaft, A. Regulation and Input Disturbance Suppression for Port-Controlled Hamiltonian Systems 1. IFAC Proceedings Volumes vol. 36 205–210 (2003) – 10.1016/s1474-6670(17)38892-4
- gentili, Input Disturbance Suppression for Port-Hamiltonian Systems An Internal Model Approach (2007)
- Li, C. & Wang, Y. Input disturbance suppression for port-controlled hamiltonian system via the internal model method. International Journal of Control, Automation and Systems vol. 11 268–276 (2013) – 10.1007/s12555-011-0175-6
- Liu Hsu, Ortega, R. & Damm, G. A globally convergent frequency estimator. IEEE Transactions on Automatic Control vol. 44 698–713 (1999) – 10.1109/9.754808
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica vol. 45 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- Ferguson, J., Donaire, A. & Middleton, R. H. Integral Control of Port-Hamiltonian Systems: Nonpassive Outputs Without Coordinate Transformation. IEEE Transactions on Automatic Control vol. 62 5947–5953 (2017) – 10.1109/tac.2017.2700995
- Ortega, R. & Romero, J. G. Robust integral control of port-Hamiltonian systems: The case of non-passive outputs with unmatched disturbances. Systems & Control Letters vol. 61 11–17 (2012) – 10.1016/j.sysconle.2011.09.015
- Bobtsov, A. A. New approach to the problem of globally convergent frequency estimator. International Journal of Adaptive Control and Signal Processing vol. 22 306–317 (2007) – 10.1002/acs.971
- Ferguson, J., Donaire, A., Ortega, R. & Middleton, R. H. Matched Disturbance Rejection for a Class of Nonlinear Systems. IEEE Transactions on Automatic Control vol. 65 1710–1715 (2020) – 10.1109/tac.2019.2933398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- Aranovskiy, S., Bobtsov, A., Kremlev, A., Nikolaev, N. & Slita, O. Identification of Frequency of Biased Harmonic Signal. European Journal of Control vol. 16 129–139 (2010) – 10.3166/ejc.16.129-139