Input disturbance suppression for port-controlled hamiltonian system via the internal model method
Authors
Abstract
This paper investigates the input disturbance suppression problem for nonlinear Port-Controlled Hamiltonian (PCH) system and presents a number of new results on the controllers design via the internal model approach. Different from the existing results on this topic we consider two cases. Firstly, the case of the disturbance generated from a linear Hamiltonian system acts through a channel other than the input channel is studied by adopting a method of decomposing the control into two parts and designing an internal model to zero the effect of the exogenous disturbance. Secondly, the case of the disturbance generated from a bounded nonlinear exosystem is studied by presenting a procedure of designing a nonlinear internal model to cancel the effect of the disturbance under two fundamental assumptions. Moreover, to further improve the suppression, a more effective internal model is also designed under less hypotheses. Finally, as an useful application, a corollary is presented by applying these results on PCH system to general nonlinear affine system. Simulations of a third-order synchronous generator model with disturbance generated from a nonlinear exosystem show the effectiveness of the designed internal model.
Keywords
Disturbance; exosystem; internal model; nonlinear; PCH system
Citation
- Journal: International Journal of Control, Automation and Systems
- Year: 2013
- Volume: 11
- Issue: 2
- Pages: 268–276
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s12555-011-0175-6
BibTeX
@article{Li_2013,
title={{Input disturbance suppression for port-controlled hamiltonian system via the internal model method}},
volume={11},
ISSN={2005-4092},
DOI={10.1007/s12555-011-0175-6},
number={2},
journal={International Journal of Control, Automation and Systems},
publisher={Springer Science and Business Media LLC},
author={Li, Changsheng and Wang, Yuzhen},
year={2013},
pages={268--276}
}
References
- Leyva-Ramos, J., Escobar, G., Martinez, P. R. & Mattavelli, P. Analog circuits to implement repetitive controllers for tracking and disturbance rejection of periodic signals. IEEE Trans. Circuits Syst. II 52, 466–470 (2005) – 10.1109/tcsii.2005.848983
- Isidori, A. & Byrnes, C. I. Output regulation of nonlinear systems. IEEE Trans. Automat. Contr. 35, 131–140 (1990) – 10.1109/9.45168
- Huang, J. & Rugh, W. J. On a nonlinear multivariable servomechanism problem. Automatica 26, 963–972 (1990) – 10.1016/0005-1098(90)90081-r
- Huang, J. Nonlinear Output Regulation. (2004) doi:10.1137/1.9780898718683 – 10.1137/1.9780898718683
- Chen, C.-L., Ding, Z. & Lennox, B. Rejection of Nonharmonic Disturbances in Nonlinear Systems With Semi-Global Stability. IEEE Trans. Circuits Syst. II 55, 1289–1293 (2008) – 10.1109/tcsii.2008.2009962
- Ding, Z. Output Regulation of Uncertain Nonlinear Systems With Nonlinear Exosystems. IEEE Trans. Automat. Contr. 51, 498–503 (2006) – 10.1109/tac.2005.864199
- Byrnes, C. I. & Isidori, A. Nonlinear Internal Models for Output Regulation. IEEE Trans. Automat. Contr. 49, 2244–2247 (2004) – 10.1109/tac.2004.838492
- Zhiyong Chen & Jie Huang. A general formulation and solvability of the global robust output regulation problem. IEEE Trans. Automat. Contr. 50, 448–462 (2005) – 10.1109/tac.2005.844721
- Xi, Z. & Ding, Z. Global adaptive output regulation of a class of nonlinear systems with nonlinear exosystems. Automatica 43, 143–149 (2007) – 10.1016/j.automatica.2006.08.011
- B M Maschke, Proc. of the 2nd FFACNOL-COS, Bordeaux (1992)
- A J Schaft van der, L2-gain and Passivity Techniques in Nonlinear Control (1999)
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Automat. Contr. 47, 1218–1233 (2002) – 10.1109/tac.2002.800770
- Yuzhen Wang, Daizhan Cheng, Chunwen Li & You Ge. Dissipative hamiltonian realization and energy-based L/sub 2/-disturbance attenuation control of multimachine power systems. IEEE Trans. Automat. Contr. 48, 1428–1433 (2003) – 10.1109/tac.2003.815037
- Gentili, L., Paoli, A. & Bonivento, C. Input Disturbance Suppression for Port-Hamiltonian Systems: An Internal Model Approach. Lecture Notes in Control and Information Sciences 85–98 doi:10.1007/978-3-540-70701-1_5 – 10.1007/978-3-540-70701-1_5
- Kazantzis, N. & Kravaris, C. Nonlinear observer design using Lyapunov’s auxiliary theorem. Systems & Control Letters 34, 241–247 (1998) – 10.1016/s0167-6911(98)00017-6
- A Astolfi, Proc. of 2nd IFAC Workshop LHMNLC, Seville, Spain (2003)
- L Gentili, Proc. of 2nd IFAC Workshop LHMNLC, Seville, Spain (2003)
- Y Wang, Generalized Controlled Hamiltonian Systems: Realization, Control and Applications (in Chinese) (2007)
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Arnold, V. I. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer New York, 1978). doi:10.1007/978-1-4757-1693-1 – 10.1007/978-1-4757-1693-1
- L Qiang, Nonlinear Control in Power Systems (1993)