Notch filters for port-Hamiltonian systems
Authors
D. A. Dirksz, J. M. A. Scherpen, A. J. van der Schaft, M. Steinbuch
Abstract
In this paper a standard notch filter is modeled in the port-Hamiltonian framework. By having such a port-Hamiltonian description it is proven that the notch filter is a passive system. The notch filter can then be interconnected with another (nonlinear) port-Hamiltonian system, while preserving the overall passivity property. By doing so we can combine a frequency-based control method, the notch filter, with the nonlinear control methodology of passivity-based control.
Citation
- Journal: 2012 American Control Conference (ACC)
- Year: 2012
- Volume:
- Issue:
- Pages: 238–243
- Publisher: IEEE
- DOI: 10.1109/acc.2012.6315150
BibTeX
@inproceedings{Dirksz_2012,
title={{Notch filters for port-Hamiltonian systems}},
DOI={10.1109/acc.2012.6315150},
booktitle={{2012 American Control Conference (ACC)}},
publisher={IEEE},
author={Dirksz, D. A. and Scherpen, J. M. A. and van der Schaft, A. J. and Steinbuch, M.},
year={2012},
pages={238--243}
}
References
- rijlaarsdam, Frequency domain based nonlinear feedforward control design for friction compensation. Mechanical Systems and Signal Processing (2011)
- Steinbuch, M. & Norg, M. L. Advanced Motion Control: An Industrial Perspective. European Journal of Control 4, 278–293 (1998) – 10.1016/s0947-3580(98)70121-9
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Automat. Contr. 47, 1218–1233 (2002) – 10.1109/tac.2002.800770
- Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493
- Ortega, R., Jeltsema, D. & Scherpen, J. M. A. Power shaping: A new paradigm for stabilization of nonlinear RLC circuits. IEEE Trans. Automat. Contr. 48, 1762–1767 (2003) – 10.1109/tac.2003.817918
- maschke, Port controlled Hamiltonian representation of distributed parameter systems. Proc IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (2000)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- maschke, Port-controlled Hamiltonian systems: Modeling origins and system-theoretic properties. IFAC Symposium on Nonlinear Control Systems (1992)
- Koopman, J., Jeltsema, D. & Verhaegen, M. Port-Hamiltonian formulation and analysis of the LuGre friction model. 2008 47th IEEE Conference on Decision and Control 3181–3186 (2008) doi:10.1109/cdc.2008.4739351 – 10.1109/cdc.2008.4739351
- nise, Control Systems Engineering (2004)
- slotine, Applied nonlinear control (1991)
- franklin, Feedback Control of Dynamic Systems (2006)
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Francis, B. A. & Wonham, W. M. The internal model principle for linear multivariable regulators. Appl Math Optim 2, 170–194 (1975) – 10.1007/bf01447855
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- khalil, Nonlinear Systems (1996)
- Gómez-Estern, F. & Van der Schaft, A. J. Physical Damping in IDA-PBC Controlled Underactuated Mechanical Systems. European Journal of Control 10, 451–468 (2004) – 10.3166/ejc.10.451-468
- gerritsen, On switched Hamiltonian systems. Proceedings 15th International Symposium on Mathematical Theory of Networks and Systems (2002)
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Jacobson, C. A., Stankovic, A. M., Tadmor, G. & Stevens, M. A. Towards a dissipativity framework for power system stabilizer design. IEEE Trans. Power Syst. 11, 1963–1968 (1996) – 10.1109/59.544671
- Isidori, A. & Byrnes, C. I. Output regulation of nonlinear systems. IEEE Trans. Automat. Contr. 35, 131–140 (1990) – 10.1109/9.45168