Neuro-based Canonical Transformation of Port Controlled Hamiltonian Systems
Authors
Aminuddin Qureshi, Sami El Ferik, Frank L. Lewis
Abstract
In the literature of control theory, tracking control of port controlled Hamiltonian systems is generally achieved using canonical transformation. Closed form evaluation of state-feedback for the canonical transformation requires the solution of certain partial differential equations which becomes very difficult for nonlinear systems. This paper presents the application of neural networks for the canonical transformation of port controlled Hamiltonian systems. Instead of solving the partial differential equations, neural networks are used to approximate the closed-form state-feedback required for canonical transformation. Ultimate boundedness of the tracking and neural network weight errors is guaranteed. The proposed approach is structure preserving. The application of neural networks is direct and off-line processing of neural networks is not needed. Efficacy of the proposed approach is demonstrated with the examples of a mass-spring system, a two-link robot arm and an Autonomous Underwater Vehicle (AUV).
Keywords
Canonical transformation; \( L^2 \)-disturbance attenuation; neural networks; port controlled Hamiltonian systems
Citation
- Journal: International Journal of Control, Automation and Systems
- Year: 2020
- Volume: 18
- Issue: 12
- Pages: 3101–3111
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s12555-019-0029-1
BibTeX
@article{Qureshi_2020,
title={{Neuro-based Canonical Transformation of Port Controlled Hamiltonian Systems}},
volume={18},
ISSN={2005-4092},
DOI={10.1007/s12555-019-0029-1},
number={12},
journal={International Journal of Control, Automation and Systems},
publisher={Springer Science and Business Media LLC},
author={Qureshi, Aminuddin and El Ferik, Sami and Lewis, Frank L.},
year={2020},
pages={3101--3111}
}
References
- Nageshrao, S. P., Lopes, G. A. D., Jeltsema, D. & Babuska, R. Port-Hamiltonian Systems in Adaptive and Learning Control: A Survey. IEEE Trans. Automat. Contr. 61, 1223–1238 (2016) – 10.1109/tac.2015.2458491
- Zhang, Q. & Liu, G. Precise Control of Elastic Joint Robot Using an Interconnection and Damping Assignment Passivity-Based Approach. IEEE/ASME Trans. Mechatron. 21, 2728–2736 (2016) – 10.1109/tmech.2016.2578287
- García-Sandoval, J. P., Hudon, N., Dochain, D. & González-Álvarez, V. Stability analysis and passivity properties of a class of thermodynamic processes: An internal entropy production approach. Chemical Engineering Science 139, 261–272 (2016) – 10.1016/j.ces.2015.07.039
- Li, H. & Wei, A. Stabilization and H∞ Control of Nonlinear Switched Hamiltonian Systems Subject to Actuator Saturation. Asian Journal of Control 19, 951–960 (2016) – 10.1002/asjc.1428
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Ryalat, M. & Laila, D. S. A simplified IDA-PBC design for underactuated mechanical systems with applications. European Journal of Control 27, 1–16 (2016) – 10.1016/j.ejcon.2015.12.001
- A Yesilderek, Automatica (1995)
- Spooner, J. T. & Passino, K. M. Stable adaptive control using fuzzy systems and neural networks. IEEE Trans. Fuzzy Syst. 4, 339–359 (1996) – 10.1109/91.531775
- H A Abdel, Proceedings of IEEE International Conference on Neural Networks (1996)
- Shouling He, Relf, K. & Unbehauen, R. A neural approach for control of nonlinear systems with feedback linearization. IEEE Trans. Neural Netw. 9, 1409–1421 (1998) – 10.1109/72.728391
- Qureshi, A., El Ferik, S. & Lewis, F. L. ℒ2 neuro‐adaptive tracking control of uncertain port‐controlled Hamiltonian systems. IET Control Theory & Appl 9, 1781–1790 (2015) – 10.1049/iet-cta.2014.1144
- Dirksz, D. A. & Scherpen, J. M. A. Structure Preserving Adaptive Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 57, 2880–2885 (2012) – 10.1109/tac.2012.2192359
- El‐Ferik, S., Qureshi, A. & Lewis, F. L. Robust neuro‐adaptive cooperative control of multi‐agent port‐controlled Hamiltonian systems. Adaptive Control & Signal 30, 488–510 (2015) – 10.1002/acs.2589
- Ge, S. S., Hang, C. C., Lee, T. H. & Zhang, T. Stable Adaptive Neural Network Control. (Springer US, 2002). doi:10.1007/978-1-4757-6577-9 – 10.1007/978-1-4757-6577-9
- Narendra, K. & Annaswamy, A. A new adaptive law for robust adaptation without persistent excitation. IEEE Trans. Automat. Contr. 32, 134–145 (1987) – 10.1109/tac.1987.1104543
- Narendra, K. S. & Parthasarathy, K. Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1, 4–27 (1990) – 10.1109/72.80202
- Igelnik, B. & Yoh-Han Pao. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans. Neural Netw. 6, 1320–1329 (1995) – 10.1109/72.471375
- Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signal Systems 2, 303–314 (1989) – 10.1007/bf02551274
- Macchelli, A., Melchiorri, C., Secchi, C. & Fantuzzi, C. A variable structure approach to energy shaping. 2003 European Control Conference (ECC) 1309–1314 (2003) doi:10.23919/ecc.2003.7085142 – 10.23919/ecc.2003.7085142
- Wang, Y., Feng, G. & Cheng, D. Simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian systems. Automatica 43, 403–415 (2007) – 10.1016/j.automatica.2006.09.008
- Shen, T., Ortega, R., Lu, Q., Mei, S. & Tamura, K. Adaptive L2 Disturbance Attenuation Of Hamiltonian Systems With Parametric Perturbation And Application To Power Systems. Asian Journal of Control 5, 143–152 (2003) – 10.1111/j.1934-6093.2003.tb00105.x
- Dirksz, D. A. & Scherpen, J. M. A. Power-based control: Canonical coordinate transformations, integral and adaptive control. Automatica 48, 1045–1056 (2012) – 10.1016/j.automatica.2012.03.003
- J J E Slotine, Applied, Nonlinear Control (1991)
- F L Lewis, Neural Network Control of Robot Manipulator and Nonlinear Systems (1998)
- P A Ioannu, Robust Adaptive Control (2012)
- M Krstic, Nonlinear and Adaptive Control Design (1995)
- Ioannou, P. & Fidan, B. Adaptive Control Tutorial. (2006) doi:10.1137/1.9780898718652 – 10.1137/1.9780898718652
- Boutalis, Y., Theodoridis, D., Kottas, T. & Christodoulou, M. A. System Identification and Adaptive Control. Advances in Industrial Control (Springer International Publishing, 2014). doi:10.1007/978-3-319-06364-5 – 10.1007/978-3-319-06364-5
- Ferreira, B., Matos, A., Cruz, N. & Pinto, M. Modeling and Control of the MARES Autonomous Underwater Vehicle. mar technol soc j 44, 19–36 (2010) – 10.4031/mtsj.44.2.5