Network modelling of physical systems: a geometric approach
Authors
Arjan van der Schaft, Bernhard Maschke, Romeo Ortega
Abstract
It is discussed how network modeling of lumped-parameter physical systems naturally leads to a geometrically defined class of systems, called port-controlled Hamiltonian systems (with dissipation) . The structural properties of these systems are investigated, in particular the existence of Casimir functions and their implications for stability. It is shown how the power-conserving interconnection with a controller system which is also a port-controlled Hamiltonian system defines a closed-loop port-controlled Hamiltonian system; and how this may be used for control by shaping the internal energy. Finally, extensions to implicit system descriptions (constraints, no a priori input-output structure) are discussed.
Keywords
bond graph, dirac structure, distribute parameter system, hamiltonian system, poisson structure
Citation
- ISBN: 9781852333782
- Publisher: Springer London
- DOI: 10.1007/bfb0110387
BibTeX
@inbook{van_der_Schaft_2001,
title={{Network modelling of physical systems: a geometric approach}},
ISBN={9781846285707},
ISSN={1610-7411},
DOI={10.1007/bfb0110387},
booktitle={{Advances in the control of nonlinear systems}},
publisher={Springer London},
author={van der Schaft, Arjan and Maschke, Bernhard and Ortega, Romeo},
year={2001},
pages={253--276}
}References
- Bloch, A. M. & Crouch, P. E. Representations of Dirac structures on vector spaces and nonlinear L-C circuits. Proceedings of Symposia in Pure Mathematics 103–117 (1998) doi:10.1090/pspum/064/1654513 – 10.1090/pspum/064/1654513
- Bloch, A. M., Leonard, N. E. & Marsden, J. E. Matching and stabilization by the method of controlled Lagrangians. Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171) vol. 2 1446–1451 – 10.1109/cdc.1998.758490
- R.W. Brockett, Geometric Control Theory (1977)
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.2307/2001258
- Variational and Hamiltonian Control Systems. Lecture Notes in Control and Information Sciences (Springer Berlin Heidelberg, 1987). doi:10.1007/bfb0042858 – 10.1007/bfb0042858
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations (1993)
- Escobar, G., van der Schaft, A. J. & Ortega, R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica 35, 445–452 (1999) – 10.1016/s0005-1098(98)00196-4
- Fujimoto, K. & Sugie, T. Stabilization of a class of Hamiltonian systems with nonholonomic constraints via canonical transformations. 1999 European Control Conference (ECC) 1076–1081 (1999) doi:10.23919/ecc.1999.7099451 – 10.23919/ecc.1999.7099451
- Hill, D. & Moylan, P. The stability of nonlinear dissipative systems. IEEE Trans. Automat. Contr. 21, 708–711 (1976) – 10.1109/tac.1976.1101352
- Isidori, A. Nonlinear Control Systems. (Springer Berlin Heidelberg, 1989). doi:10.1007/978-3-662-02581-9 – 10.1007/978-3-662-02581-9
- Lozano, R., Brogliato, B., Egeland, O. & Maschke, B. Dissipative Systems Analysis and Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-3668-2 – 10.1007/978-1-4471-3668-2
- Marsden, J. E. & Ratiu, T. S. Introduction to Mechanics and Symmetry. Texts in Applied Mathematics (Springer New York, 1994). doi:10.1007/978-1-4612-2682-6 – 10.1007/978-1-4612-2682-6
- B.M. Maschke, Interconnection and structure of controlled Hamiltonian systems: a network approach, (in French) (1998)
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute 329, 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Maschke, B. M. J. & van der Schaft, A. J. Port Controlled Hamiltonian Representation of Distributed Parameter Systems. IFAC Proceedings Volumes 33, 27–37 (2000) – 10.1016/s1474-6670(17)35543-x
- Maschke, B. M. J., Ortega, R. & van der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171) vol. 4 3599–3604 – 10.1109/cdc.1998.761738
- B.M. Maschke, Proc. 14th IFAC World Congress, Beijing (1999)
- Maschke, B. M., van der Schaft, A. J. & Breedveld, P. C. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Trans. Circuits Syst. I 42, 73–82 (1995) – 10.1109/81.372847
- Maschke, B. M. J. & van der Schaft, A. J. Interconnected mechanical systems, part II: the dynamics of spatial mechanical networks. Modelling and Control of Mechanical Systems 17–30 (1997) doi:10.1142/9781848160873_0002 – 10.1142/9781848160873_0002
- J.I. Neimark, Dynamics of Nonholonomic Systems (1972)
- Nijmeijer, H. & van der Schaft, A. Nonlinear Dynamical Control Systems. (Springer New York, 1990). doi:10.1007/978-1-4757-2101-0 – 10.1007/978-1-4757-2101-0
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- H. M. Paynter, Analysis and design of engineering systems (1960)
- A.J. Schaft van der, System theoretic properties of physical systems (1984)
- van der Schaft, A. J. Stabilization of Hamiltonian systems. Nonlinear Analysis: Theory, Methods & Applications 10, 1021–1035 (1986) – 10.1016/0362-546x(86)90086-6
- van der Schaft, A. Nonlinear H ∞ Control. Communications and Control Engineering 163–192 (2000) doi:10.1007/978-1-4471-0507-7_7 – 10.1007/978-1-4471-0507-7_7
- A.J. Schaft van der, J. of the Society of Instrument and Control Engineers of Japan (SICE) (2000)
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics 34, 225–233 (1994) – 10.1016/0034-4877(94)90038-8
- A.J. Schaft van der, Archiv für Elektronik und Übertragungstechnik (1995)
- A.J. Schaft van der, Modelling and Control of Mechanical Systems (1997)
- Schlacher, K. & Kugi, A. Control of mechanical structures by piezoelectric actuators and sensors. Lecture Notes in Control and Information Sciences 275–292 (1999) doi:10.1007/1-84628-577-1_15 – 10.1007/1-84628-577-1_15
- Stramigioli, S., Maschke, B. & van der Schaft, A. Passive Output Feedback and Port Interconnection. IFAC Proceedings Volumes 31, 591–596 (1998) – 10.1016/s1474-6670(17)40401-0
- S. Stramigioli, Proc. Symposium Commemorating the Legacy, Work and Life of Sir R.S. Ball, J. Duffy and H. Lipkin organizers, July 9–11 (2000)
- Stramigioli, S., van der Schaft, A., Maschke, B., Andreotti, S. & Melchiorri, C. Geometric scattering in tele-manipulation of port controlled Hamiltonian systems. Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187) vol. 5 5108–5113 – 10.1109/cdc.2001.914760
- Takegaki, M. & Arimoto, S. A New Feedback Method for Dynamic Control of Manipulators. Journal of Dynamic Systems, Measurement, and Control 103, 119–125 (1981) – 10.1115/1.3139651
- Willems, J. C. Dissipative dynamical systems part I: General theory. Arch. Rational Mech. Anal. 45, 321–351 (1972) – 10.1007/bf00276493