Leveraging Port-Hamiltonian Theory for Impedance Control Benchmarking
Authors
Leonardo F. Dos Santos, Elisa G. Vergamini, Cícero Zanette, Lucca Maitan, Thiago Boaventura
Abstract
This work proposes PH-based metrics for benchmarking impedance control. A causality-consistent PH model is introduced for mass-spring-damper impedance in Cartesian space. Based on this model, a differentiable, force-torque sensing-independent, n-DoF passivity condition is derived, valid for time-varying references. An impedance fidelity metric is also defined from step-response power in free motion, capturing dynamic decoupling. The proposed metrics are validated in Gazebo simulations with a six-DoF manipulator and a quadruped leg. Results demonstrate the suitability of the PH framework for standardized impedance control benchmarking.
Citation
- Journal: 2025 IEEE International Conference on Advanced Robotics (ICAR)
- Year: 2025
- Volume:
- Issue:
- Pages: 390–395
- Publisher: IEEE
- DOI: 10.1109/icar65334.2025.11338640
BibTeX
@inproceedings{Dos_Santos_2025,
title={{Leveraging Port-Hamiltonian Theory for Impedance Control Benchmarking}},
DOI={10.1109/icar65334.2025.11338640},
booktitle={{2025 IEEE International Conference on Advanced Robotics (ICAR)}},
publisher={IEEE},
author={Dos Santos, Leonardo F. and Vergamini, Elisa G. and Zanette, Cícero and Maitan, Lucca and Boaventura, Thiago},
year={2025},
pages={390--395}
}References
- Risiglione M, Barasuol V, Caldwell DG, Semini C (2022) A Whole-Body Controller Based on a Simplified Template for Rendering Impedances in Quadruped Manipulators. 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 9620–962 – 10.1109/iros47612.2022.9981895
- Zhang J, Li H, Liu Q, Li S (2023) The model reference adaptive impedance control for underwater manipulator compliant operation. Transactions of the Institute of Measurement and Control 45(11):2135–2148. https://doi.org/10.1177/0142331222114733 – 10.1177/01423312221147334
- Pedro GDG, Bermudez G, Medeiros VS, Cruz Neto HJ da, Barros LGD de, Pessin G, Becker M, Freitas GM, Boaventura T (2024) Quadruped Robot Control: An Approach Using Body Planar Motion Control, Legs Impedance Control and Bézier Curves. Sensors 24(12):3825. https://doi.org/10.3390/s2412382 – 10.3390/s24123825
- Behrens R, Belov A, Poggendorf M, Penzlin F, Hanses M, Jantz E, Elkmann N (2018) Performance Indicator for Benchmarking Force-Controlled Robots. 2018 IEEE International Conference on Robotics and Automation (ICRA) 1653–166 – 10.1109/icra.2018.8460858
- Finkbeiner, A concept for unifying the performance assessment of industrial robot systems with closed-loop dynamic trajectories. ISR Europe 2023; 56th International Symposium on Robotics
- Falco J, Hemphill D, Kimble K, Messina E, Norton A, Ropelato R, Yanco H (2020) Benchmarking Protocols for Evaluating Grasp Strength, Grasp Cycle Time, Finger Strength, and Finger Repeatability of Robot End-Effectors. IEEE Robot Autom Lett 5(2):644–651. https://doi.org/10.1109/lra.2020.296416 – 10.1109/lra.2020.2964164
- Vergamini EG Force control benchmarking of hydraulic and electrical actuation systems applied to robotic – 10.11606/d.18.2024.tde-11062024-113219
- Suarez A, Vega VM, Fernandez M, Heredia G, Ollero A (2020) Benchmarks for Aerial Manipulation. IEEE Robot Autom Lett 5(2):2650–2657. https://doi.org/10.1109/lra.2020.297287 – 10.1109/lra.2020.2972870
- {“status”:”error” – 10.1115/1.3140702
- Hogan N (1987) Modularity and Causality in Physical System Modelling. Journal of Dynamic Systems, Measurement, and Control 109(4):384–391. https://doi.org/10.1115/1.314387 – 10.1115/1.3143871
- Chen, Data-driven prediction of general hamiltonian dynamics via learning exactly-symplectic maps. International Conference on Machine Learning
- Celledoni E, Leone A, Murari D, Owren B (2023) Learning Hamiltonians of constrained mechanical systems. Journal of Computational and Applied Mathematics 417:114608. https://doi.org/10.1016/j.cam.2022.11460 – 10.1016/j.cam.2022.114608
- Beckers T, Seidman J, Perdikaris P, Pappas GJ (2022) Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior. 2022 IEEE 61st Conference on Decision and Control (CDC) 1447–145 – 10.1109/cdc51059.2022.9992733
- Ortega, Learnability of linear port-hamiltonian systems. Journal of Machine Learning Research (2024)
- Chan-Zheng C, Borja P, Scherpen JMA (2023) Tuning of Passivity-Based Controllers for Mechanical Systems. IEEE Trans Contr Syst Technol 31(6):2515–2530. https://doi.org/10.1109/tcst.2023.326099 – 10.1109/tcst.2023.3260995
- Mujica M, Donaire A, Benoussaad M, Fourquet J-Y (2021) Impedance Control for a Flexible Robot Enhanced with Energy Tanks in the port-Hamiltonian Framework. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 9283–928 – 10.1109/iros51168.2021.9636472
- Rashad R, Bicego D, Zult J, Sanchez-Escalonilla S, Jiao R, Franchi A, Stramigioli S (2022) Energy Aware Impedance Control of a Flying End-Effector in the Port-Hamiltonian Framework. IEEE Trans Robot 38(6):3936–3955. https://doi.org/10.1109/tro.2022.318353 – 10.1109/tro.2022.3183532
- Colgate JE (1994) Coupled Stability of Multiport Systems—Theory and Experiments. Journal of Dynamic Systems, Measurement, and Control 116(3):419–428. https://doi.org/10.1115/1.289923 – 10.1115/1.2899237
- Hejrati M, Mattila J (2023) Nonlinear Subsystem-Based Adaptive Impedance Control of Physical Human-Robot-Environment Interaction in Contact-Rich Tasks. IEEE Robot Autom Lett 8(10):6083–6090. https://doi.org/10.1109/lra.2023.330261 – 10.1109/lra.2023.3302616
- Goldstein, Classical Mechanics (1980)
- Control 1(2–3):173–378. https://doi.org/10.1561/260000000 – 10.1561/2600000002
- Ferguson J, Renton C (2024) Port-Hamiltonian Representation of Mechanical Systems With Velocity Inputs. IEEE Control Syst Lett 8:1367–1372. https://doi.org/10.1109/lcsys.2024.341063 – 10.1109/lcsys.2024.3410635
- Ott, Cartesian Impedance Control of Redundant and Flexible-Joint Robots (2008)
- Secchi, Control of Interactive Robotic Interfaces: A port-Hamiltonian Approach (2007)
- Macenski S, Foote T, Gerkey B, Lalancette C, Woodall W (2022) Robot Operating System 2: Design, architecture, and uses in the wild. Sci Robot 7(66). https://doi.org/10.1126/scirobotics.abm607 – 10.1126/scirobotics.abm6074
- Magyar, Generic and simple controls framework for ROS 2. (2025)
- Carpentier, Pinocchio: fast forward and inverse dynamics for poly-articulated systems. (2021)
- Zhang Z, Bellegarda G, Shafiee M, Ijspeert A (2024) Online Optimization of Central Pattern Generators for Quadruped Locomotion. 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 13547–1355 – 10.1109/iros58592.2024.10802762