Port-Hamiltonian Representation of Mechanical Systems With Velocity Inputs
Authors
Joel Ferguson, Christopher Renton
Abstract
In this note, we propose a method for describing the dynamics of mechanical systems with velocity-based inputs within the port-Hamiltonian framework. Canonical representations of mechanical systems assume force/torque inputs. Many commonly used actuators, however, have internal dynamics that cause the output velocity to quickly converge to a specified reference velocity. In such cases, it is more meaningful from a modeling and control perspective to define models that admit a velocity input. This is achieved in this letter by performing a momentum transformation and state reduction, resulting in a reduced-order model where the relevant velocity is a causal input. The reduced-order model preserves the passivity of the original port-Hamiltonian system. The results are demonstrated by applying a velocity-input control signal to the classical cart-pole system.
Citation
- Journal: IEEE Control Systems Letters
- Year: 2024
- Volume: 8
- Issue:
- Pages: 1367–1372
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/lcsys.2024.3410635
BibTeX
@article{Ferguson_2024,
title={{Port-Hamiltonian Representation of Mechanical Systems With Velocity Inputs}},
volume={8},
ISSN={2475-1456},
DOI={10.1109/lcsys.2024.3410635},
journal={IEEE Control Systems Letters},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Ferguson, Joel and Renton, Christopher},
year={2024},
pages={1367--1372}
}
References
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Lanczos. The Variational Principles of Mechanics (1970)
- Donaire, A. et al. Shaping the Energy of Mechanical Systems Without Solving Partial Differential Equations. IEEE Transactions on Automatic Control vol. 61 1051–1056 (2016) – 10.1109/tac.2015.2458091
- Acosta, J. A., Ortega, R., Astolfi, A. & Mahindrakar, A. D. Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Transactions on Automatic Control vol. 50 1936–1955 (2005) – 10.1109/tac.2005.860292
- Fujimoto, K., Sakurama, K. & Sugie, T. General Framework of Trajectory Tracking Control of Hamiltonian Systems via Generalized Canonical Transformations. IFAC Proceedings Volumes vol. 34 705–710 (2001) – 10.1016/s1474-6670(17)35261-8
- Ferguson, J., Donaire, A. & Middleton, R. H. Kinetic-Potential Energy Shaping for Mechanical Systems With Applications to Tracking. IEEE Control Systems Letters vol. 3 960–965 (2019) – 10.1109/lcsys.2019.2919842
- Romero, J. G., Ortega, R. & Sarras, I. A Globally Exponentially Stable Tracking Controller for Mechanical Systems Using Position Feedback. IEEE Transactions on Automatic Control vol. 60 818–823 (2015) – 10.1109/tac.2014.2330701
- Ferguson, J., Donaire, A. & Middleton, R. H. Passive momentum observer for mechanical systems. IFAC-PapersOnLine vol. 54 131–136 (2021) – 10.1016/j.ifacol.2021.11.067
- Harb, A. M. & Zaher, A. A. Nonlinear control of permanent magnet stepper motors. Communications in Nonlinear Science and Numerical Simulation vol. 9 443–458 (2004) – 10.1016/s1007-5704(02)00133-8
- Siciliano, B., Sciavicco, L., Villani, L. & Oriolo, G. Robotics. Advanced Textbooks in Control and Signal Processing (Springer London, 2009). doi:10.1007/978-1-84628-642-1 – 10.1007/978-1-84628-642-1
- Spong. Robot Modeling and Control (2020)
- Maschke, B. M. & van der Schaft, A. J. A Hamiltonian approach to stabilization of nonholonomic mechanical systems. Proceedings of 1994 33rd IEEE Conference on Decision and Control vol. 3 2950–2954 – 10.1109/cdc.1994.411344
- Luca, A. D. & Oriolo, G. Modelling and Control of Nonholonomic Mechanical Systems. CISM International Centre for Mechanical Sciences 277–342 (1995) doi:10.1007/978-3-7091-4362-9_7 – 10.1007/978-3-7091-4362-9_7