In-domain damping assignment of a Timoshenko-beam using state feedback boundary control
Authors
Jeanne Redaud, Jean Auriol, Yann Le Gorrec
Abstract
In this paper, we combine the backstepping methodology and the port Hamiltonian framework to design a boundary full-state feedback controller that modifies the closed-loop in-domain damping of a Timoshenko beam. The beam under consideration is clamped in one end of its spatial domain and actuated at the opposite one. The port Hamiltonian formulation is used to derive several boundedly invertible transformations that map the original system into an exponentially stable closed-loop target system with additional in-domain damping terms. The proposed methodology allows the introduction of tuning parameters with clear physical interpretations for achievable closed-loop behavior. Simulations illustrate the performances of the controller.
Citation
- Journal: 2022 IEEE 61st Conference on Decision and Control (CDC)
- Year: 2022
- Volume:
- Issue:
- Pages: 5405–5410
- Publisher: IEEE
- DOI: 10.1109/cdc51059.2022.9993273
BibTeX
@inproceedings{Redaud_2022,
title={{In-domain damping assignment of a Timoshenko-beam using state feedback boundary control}},
DOI={10.1109/cdc51059.2022.9993273},
booktitle={{2022 IEEE 61st Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Redaud, Jeanne and Auriol, Jean and Gorrec, Yann Le},
year={2022},
pages={5405--5410}
}
References
- Coron, J.-M., Hu, L. & Olive, G. Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation. Automatica vol. 84 95–100 (2017) – 10.1016/j.automatica.2017.05.013
- Gifari, M. W., Naghibi, H., Stramigioli, S. & Abayazid, M. A review on recent advances in soft surgical robots for endoscopic applications. The International Journal of Medical Robotics and Computer Assisted Surgery vol. 15 (2019) – 10.1002/rcs.2010
- Hu, L., Vazquez, R., Meglio, F. D. & Krstic, M. Boundary Exponential Stabilization of 1-Dimensional Inhomogeneous Quasi-Linear Hyperbolic Systems. SIAM Journal on Control and Optimization vol. 57 963–998 (2019) – 10.1137/15m1012712
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Kim, J. U. & Renardy, Y. Boundary Control of the Timoshenko Beam. SIAM Journal on Control and Optimization vol. 25 1417–1429 (1987) – 10.1137/0325078
- Krstic, M. & Smyshlyaev, A. Boundary Control of PDEs. (2008) doi:10.1137/1.9780898718607 – 10.1137/1.9780898718607
- Krstic, M., Siranosian, A. A. & Smyshlyaev, A. Backstepping Boundary Controllers and Observers for the Slender Timoshenko Beam: Part I–Design. 2006 American Control Conference 2412–2417 (2006) doi:10.1109/acc.2006.1656581 – 10.1109/acc.2006.1656581
- LeVeque, R. J. Finite Volume Methods for Hyperbolic Problems. (2002) doi:10.1017/cbo9780511791253 – 10.1017/cbo9780511791253
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Morgül, Ö. Dynamic boundary control of the timoshenko beam. Automatica vol. 28 1255–1260 (1992) – 10.1016/0005-1098(92)90070-v
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control vol. 47 1218–1233 (2002) – 10.1109/tac.2002.800770
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Ramirez, H., Zwart, H., Le Gorrec, Y. & Macchelli, A. On backstepping boundary control for a class of linear port-Hamiltonian systems. 2017 IEEE 56th Annual Conference on Decision and Control (CDC) 658–663 (2017) doi:10.1109/cdc.2017.8263736 – 10.1109/cdc.2017.8263736
- Raposo, C. A., Ferreira, J., Santos, M. L. & Castro, N. N. O. Exponential stability for the Timoshenko system with two weak dampings. Applied Mathematics Letters vol. 18 535–541 (2005) – 10.1016/j.aml.2004.03.017
- Redaud, J., Auriol, J. & Gorrec, Y. L. Distributed Damping Assignment for a Wave Equation in the Port-Hamiltonian Framework. IFAC-PapersOnLine vol. 55 155–161 (2022) – 10.1016/j.ifacol.2022.10.393
- Timoshenko, Vibration problems in engineering (1974)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Trang VU, N. M., LEFÈVRE, L. & NOUAILLETAS, R. Distributed and backstepping boundary controls to achieve IDA-PBC design. IFAC-PapersOnLine vol. 48 482–487 (2015) – 10.1016/j.ifacol.2015.05.034
- Vu, N. M. T., Lefèvre, L. & Nouailletas, R. Distributed and backstepping boundary controls for port-Hamiltonian systems with symmetries. Mathematical and Computer Modelling of Dynamical Systems vol. 23 55–76 (2016) – 10.1080/13873954.2016.1232280
- Wu, Optimal actuator location for electro-active polymer actuated endoscope. IFAC-PapersOnLine (2018)
- Zwart, H., Le Gorrec, Y., Maschke, B. & Villegas, J. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control, Optimisation and Calculus of Variations vol. 16 1077–1093 (2009) – 10.1051/cocv/2009036