Heat exchanger control: Performance of thermodynamics-based geometrical vs classical PID controllers
Authors
Omar R. Gómez-Gómez, Marco A. Zárate-Navarro, J. Paulo García-Sandoval
Abstract
In this communication, a control problem based on thermodynamic principles is developed to control the output temperature of a heat exchanger in an experimental setup. The system is controlled through a nonlinear output error, which is proportional to the total entropy production within the heat exchanger. A lumped-parameter model of the heat exchanger allows to define the thermodynamic control scheme, with geometric control principles, a high-gain observer and an anti-windup scheme, which provides robustness against parametric uncertainties and disturbances. To make a comparison with classical control schemes, a Ziegler–Nichols PID controller was tuned for a First Order Plus Dead Time plant approximation. The experimental setup used a National Instruments Compact FieldPoint controller, and the control scheme was programmed in a LabVIEW interface. The performance of the proposed controller was tested under two criteria: energetic performance and total tracking control error. The results show that the classical controller has a better energy-saving performance, while the thermodynamic controller has a better tracking performance, making it more suitable for applications where temperature control needs to be more precise.
Keywords
Heat exchanger; LabVIEW; Non-equilibrium thermodynamics; PID
Citation
- Journal: Case Studies in Thermal Engineering
- Year: 2025
- Volume: 71
- Issue:
- Pages: 106130
- Publisher: Elsevier BV
- DOI: 10.1016/j.csite.2025.106130
BibTeX
@article{G_mez_G_mez_2025,
title={{Heat exchanger control: Performance of thermodynamics-based geometrical vs classical PID controllers}},
volume={71},
ISSN={2214-157X},
DOI={10.1016/j.csite.2025.106130},
journal={Case Studies in Thermal Engineering},
publisher={Elsevier BV},
author={Gómez-Gómez, Omar R. and Zárate-Navarro, Marco A. and García-Sandoval, J. Paulo},
year={2025},
pages={106130}
}
References
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- García-Sandoval, J. P., Hudon, N., Dochain, D. & González-Álvarez, V. Stability analysis and passivity properties of a class of thermodynamic processes: An internal entropy production approach. Chemical Engineering Science vol. 139 261–272 (2016) – 10.1016/j.ces.2015.07.039
- García-Sandoval, J. P., Hudon, N. & Dochain, D. Generalized Hamiltonian representation of thermo-mechanical systems based on an entropic formulation. Journal of Process Control vol. 51 18–26 (2017) – 10.1016/j.jprocont.2016.09.011
- Romo-Hernández, A., Hudon, N., Ydstie, B. E. & Dochain, D. Thermodynamic Analysis and Feedback Stabilization for Irreversible Liquid–Vapor Systems. Industrial & Engineering Chemistry Research vol. 59 2252–2260 (2020) – 10.1021/acs.iecr.9b04869
- Alonso, A. A. & Erik Ydstie, B. Process systems, passivity and the second law of thermodynamics. Computers & Chemical Engineering vol. 20 S1119–S1124 (1996) – 10.1016/0098-1354(96)00194-9
- Alonso, A. A. & Ydstie, B. E. Stabilization of distributed systems using irreversible thermodynamics. Automatica vol. 37 1739–1755 (2001) – 10.1016/s0005-1098(01)00140-6
- Bao, (2007)
- Sangi, R. & Müller, D. Application of the second law of thermodynamics to control: A review. Energy vol. 174 938–953 (2019) – 10.1016/j.energy.2019.03.024
- Favache, A., Dochain, D. & Winkin, J. J. Power-shaping control: Writing the system dynamics into the Brayton–Moser form. Systems & Control Letters vol. 60 618–624 (2011) – 10.1016/j.sysconle.2011.04.021
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. Lyapunov-based control of non isothermal continuous stirred tank reactors using irreversible thermodynamics. Journal of Process Control vol. 22 412–422 (2012) – 10.1016/j.jprocont.2011.12.007
- Zárate-Navarro, M. A., García-Sandoval, J. P. & Hudon, N. A saturated feedforward/cascade controller for passive continuous reacting systems using entropy production shaping. European Journal of Control vol. 49 53–61 (2019) – 10.1016/j.ejcon.2019.01.006
- Zarate-Navarro, M. A., Dubljevic, S., Campos-Rodriguez, A., Aguilar-Garnica, E. & Garcia-Sandoval, J. P. Dissipative Boundary Control for an Adiabatic Plug Flow Reactor With Mass Recycle. IEEE Access vol. 10 30939–30948 (2022) – 10.1109/access.2022.3157335
- Ramirez, H. & Le Gorrec, Y. An Overview on Irreversible Port-Hamiltonian Systems. Entropy vol. 24 1478 (2022) – 10.3390/e24101478
- Ramirez, H., Gorrec, Y. L. & Maschke, B. Boundary controlled irreversible port-Hamiltonian systems. Chemical Engineering Science vol. 248 117107 (2022) – 10.1016/j.ces.2021.117107
- Mora, L. A., Le Gorrec, Y. & Ramirez, H. Energy-shaping and entropy-assignment boundary control of the heat equation. Systems & Control Letters vol. 189 105821 (2024) – 10.1016/j.sysconle.2024.105821
- Philipp, F. M., Schaller, M., Worthmann, K., Faulwasser, T. & Maschke, B. Optimal control of port-Hamiltonian systems: Energy, entropy, and exergy. Systems & Control Letters vol. 194 105942 (2024) – 10.1016/j.sysconle.2024.105942
- García-Morales, J. et al. Inverse artificial neural network control design for a double tube heat exchanger. Case Studies in Thermal Engineering vol. 34 102075 (2022) – 10.1016/j.csite.2022.102075
- Kanoh, H., Itoh, T. & Abe, N. Nonlinear H∞ control for heat exchangers controlled by the manipulation of flow rate. Nonlinear Analysis: Theory, Methods & Applications vol. 30 2237–2248 (1997) – 10.1016/s0362-546x(97)00135-1
- Oravec, J., Bakošová, M., Mészáros, A. & Míková, N. Experimental investigation of alternative robust model predictive control of a heat exchanger. Applied Thermal Engineering vol. 105 774–782 (2016) – 10.1016/j.applthermaleng.2016.05.046
- Dong, H., Li, X., He, X., Zeng, Z. & Wen, G. A two-degree-of-freedom controller for a high-precision air temperature control system with multiple disturbances. Case Studies in Thermal Engineering vol. 50 103442 (2023) – 10.1016/j.csite.2023.103442
- Rsetam, K., Al-Rawi, M. & Cao, Z. Robust composite temperature control of electrical tube furnaces by using disturbance observer. Case Studies in Thermal Engineering vol. 30 101781 (2022) – 10.1016/j.csite.2022.101781
- Cao, S., Zhao, W. & Zhu, A. Research on intervention PID control of VAV terminal based on LabVIEW. Case Studies in Thermal Engineering vol. 45 103002 (2023) – 10.1016/j.csite.2023.103002
- Bhaskarwar, Automation of shell and tube type heat exchanger with PLC and LabVIEW. (2015)
- Sánchez, A. et al. A temperature control system for batch pretreatments of lignocellulosic biomass: proposal, implementation and evaluation. Cellulose vol. 30 2085–2095 (2023) – 10.1007/s10570-022-05039-x
- Pérez-Pirela, Development of a simplified model for a distributed-parameter heat exchange system for thermodynamic principles-based control purposes. IFAC-Pap. (2018)
- Saleem, O., Ahmad, K. R. & Iqbal, J. Fuzzy-Augmented Model Reference Adaptive PID Control Law Design for Robust Voltage Regulation in DC–DC Buck Converters. Mathematics vol. 12 1893 (2024) – 10.3390/math12121893
- Smith, (2005)