From statistical physics to macroscopic port-Hamiltonian Systems: A roadmap
Authors
Judy Najnudel, Thomas Hélie, David Roze, Rémy Müller
Abstract
This paper addresses the power-balanced modeling of physical systems with numerous degrees of freedom. The proposed approach combines statistical physics and port-Hamiltonian formulation, to produce macroscopic power balanced systems with reduced complexity. Thermodynamic variables are explicitly taken into account in the modeling to ensure thermodynamic consistency. The method is illustrated on two applications: an ideal gas in a thermostat, and a ferromagnet in a thermostat.
Keywords
physical modeling; statistical physics; thermodynamics; port-Hamiltonian systems
Citation
- Journal: IFAC-PapersOnLine
- Year: 2021
- Volume: 54
- Issue: 19
- Pages: 70–75
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2021.11.057
- Note: 7th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2021- Berlin, Germany, 11-13 October 2021
BibTeX
@article{Najnudel_2021,
title={{From statistical physics to macroscopic port-Hamiltonian Systems: A roadmap}},
volume={54},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2021.11.057},
number={19},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Najnudel, Judy and Hélie, Thomas and Roze, David and Müller, Rémy},
year={2021},
pages={70--75}
}
References
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Bertotti, (1998)
- Davies, (1998)
- Delvenne, J.-C. & Sandberg, H. Finite-time thermodynamics of port-Hamiltonian systems. Physica D: Nonlinear Phenomena vol. 267 123–132 (2014) – 10.1016/j.physd.2013.07.017
- Duindam, (2009)
- Eberard, D. & Maschke, B. Port hamiltonian systems extended to irreversible systems : The example of the heat conduction. IFAC Proceedings Volumes vol. 37 243–248 (2004) – 10.1016/s1474-6670(17)31230-2
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Ersal, T., Fathy, H. K., Rideout, D. G., Louca, L. S. & Stein, J. L. A Review of Proper Modeling Techniques. Journal of Dynamic Systems, Measurement, and Control vol. 130 (2008) – 10.1115/1.2977484
- Falaize, A. & Hélie, T. Passive Guaranteed Simulation of Analog Audio Circuits: A Port-Hamiltonian Approach. Applied Sciences vol. 6 273 (2016) – 10.3390/app6100273
- Graben, H. W. & Ray, J. R. Unified treatment of adiabatic ensembles. Physical Review A vol. 43 4100–4103 (1991) – 10.1103/physreva.43.4100
- Gray, (2011)
- Ising, E. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik vol. 31 253–258 (1925) – 10.1007/bf02980577
- Jaynes, E. T. On the rationale of maximum-entropy methods. Proceedings of the IEEE vol. 70 939–952 (1982) – 10.1109/proc.1982.12425
- Kittel, C. Physical Theory of Ferromagnetic Domains. Reviews of Modern Physics vol. 21 541–583 (1949) – 10.1103/revmodphys.21.541
- Landsberg, (2014)
- Liechtenstein, A. I., Katsnelson, M. I. & Gubanov, V. A. Exchange interactions and spin-wave stiffness in ferromagnetic metals. Journal of Physics F: Metal Physics vol. 14 L125–L128 (1984) – 10.1088/0305-4608/14/7/007
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Newell, G. F. & Montroll, E. W. On the Theory of the Ising Model of Ferromagnetism. Reviews of Modern Physics vol. 25 353–389 (1953) – 10.1103/revmodphys.25.353
- Patrascioiu, The ergodic-hypothesis: a complicated problem in mathematics and physics. Los Alamos Science (1987)
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ray, Ensembles and computer simulation calculation of response functions. (2005)
- Stowe, (2007)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002