Fixed-time \( H^\infty \) tracking control of unmanned underwater vehicles with disturbance rejection via Port-Hamiltonian framework
Authors
Lina Jin, Shuanghe Yu, Qiang Zhao, Guoyou Shi, Xiaofeng Wu
Abstract
The fixed-time tracking control schemes of unmanned underwater vehicles (UUVs) are investigated in body-fixed coordinates frame based on Port-Hamiltonian (PH) model with external disturbances. The novel locally and globally fixed-time control laws via the interconnection and damping assignment passivity-based control (IDA-PBC) are designed for trajectory tracking in UUVs. The virtual desired equilibria consisted of the tracking error and the desired trajectory are established by the matching conditions. Moreover, the fixed-time stabilization of the UUV induced of variable parameter matrixes is analyzed. Compared with the traditional IDA-PBC controller, the UUV is guaranteed to achieve the reference trajectory within a fixed time regardless of initial conditions. In the presence of external disturbances, the H ∞ laws are incorporated in the fixed-time control for the UUV, which can ensure faster trajectory tracking and strong anti-disturbance. Finally, the simulation results demonstrate the effectiveness of the main schemes.
Keywords
Fixed-time; PH; IDA-PBC; UUV
Citation
- Journal: Ocean Engineering
- Year: 2024
- Volume: 293
- Issue:
- Pages: 116533
- Publisher: Elsevier BV
- DOI: 10.1016/j.oceaneng.2023.116533
BibTeX
@article{Jin_2024,
title={{Fixed-time <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mrow><mml:msub><mml:mi>H</mml:mi><mml:mi>∞</mml:mi></mml:msub></mml:mrow></mml:math> tracking control of unmanned underwater vehicles with disturbance rejection via Port-Hamiltonian framework}},
volume={293},
ISSN={0029-8018},
DOI={10.1016/j.oceaneng.2023.116533},
journal={Ocean Engineering},
publisher={Elsevier BV},
author={Jin, Lina and Yu, Shuanghe and Zhao, Qiang and Shi, Guoyou and Wu, Xiaofeng},
year={2024},
pages={116533}
}
References
- Benmouna, A., Becherif, M., Boulon, L., Dépature, C. & Ramadan, H. S. Efficient experimental energy management operating for FC/battery/SC vehicles via hybrid Artificial Neural Networks-Passivity Based Control. Renewable Energy vol. 178 1291–1302 (2021) – 10.1016/j.renene.2021.06.038
- Borja, New results on stabilization of Port-Hamiltonian systems via PID passivity-based control. IEEE Trans. Automat. Control (2020)
- Cao, S., Sun, L., Jiang, J. & Zuo, Z. Reinforcement Learning-Based Fixed-Time Trajectory Tracking Control for Uncertain Robotic Manipulators With Input Saturation. IEEE Transactions on Neural Networks and Learning Systems vol. 34 4584–4595 (2023) – 10.1109/tnnls.2021.3116713
- Paliotta, C. et al. Trajectory Tracking and Path Following for Underactuated Marine Vehicles. IEEE Transactions on Control Systems Technology vol. 27 1423–1437 (2019) – 10.1109/tcst.2018.2834518
- Cui, R., Chen, L., Yang, C. & Chen, M. Extended State Observer-Based Integral Sliding Mode Control for an Underwater Robot With Unknown Disturbances and Uncertain Nonlinearities. IEEE Transactions on Industrial Electronics vol. 64 6785–6795 (2017) – 10.1109/tie.2017.2694410
- Donaire, A., Romero, J. G. & Perez, T. Trajectory tracking passivity-based control for marine vehicles subject to disturbances. Journal of the Franklin Institute vol. 354 2167–2182 (2017) – 10.1016/j.jfranklin.2017.01.012
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica vol. 48 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- Fabiani, F., Fenucci, D. & Caiti, A. A distributed passivity approach to AUV teams control in cooperating potential games. Ocean Engineering vol. 157 152–163 (2018) – 10.1016/j.oceaneng.2018.02.065
- Hu, X., Gong, Q. & Li, K. Event-triggered adaptive disturbance rejection for marine surface vehicles with unknown dynamics and disturbances. Ocean Engineering vol. 268 113379 (2023) – 10.1016/j.oceaneng.2022.113379
- Jia, Z., Qiao, L. & Zhang, W. Adaptive tracking control of unmanned underwater vehicles with compensation for external perturbations and uncertainties using Port-Hamiltonian theory. Ocean Engineering vol. 209 107402 (2020) – 10.1016/j.oceaneng.2020.107402
- Liang, H., Fu, Y., Gao, J. & Cao, H. Finite-time velocity-observed based adaptive output-feedback trajectory tracking formation control for underactuated unmanned underwater vehicles with prescribed transient performance. Ocean Engineering vol. 233 109071 (2021) – 10.1016/j.oceaneng.2021.109071
- Li, Passivity-based trajectory tracking and formation control of nonholonomic wheeled robots without velocity measurements. IEEE Trans. Automat. Control (2023)
- Liu, X. & Liao, X. Fixed-Time Control for a Class of Nonlinear PH-DAE Systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems vol. 53 5161–5173 (2023) – 10.1109/tsmc.2023.3258447
- Liu, X. & Zhao, M. Memristor‐based disturbance rejection control for port‐Hamiltonian systems with locally fixed‐time convergence. IET Control Theory & Applications vol. 16 1326–1340 (2022) – 10.1049/cth2.12307
- Liu, X. & Liao, X. Fixed-Time $\mathcal {H}_{\infty }$ Control for Port-Controlled Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 64 2753–2765 (2019) – 10.1109/tac.2018.2874768
- Ma, Adaptive path-tracking control with passivity-based observer by Port-Hamiltonian model for autonomous vehicles. IEEE Trans. Intell. Veh. (2023)
- Ortega, (2013)
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Qi, Z. et al. Learning-Based Path Planning and Predictive Control for Autonomous Vehicles With Low-Cost Positioning. IEEE Transactions on Intelligent Vehicles vol. 8 1093–1104 (2023) – 10.1109/tiv.2022.3146972
- Ryalat, M., Laila, D. S., ElMoaqet, H. & Almtireen, N. Dynamic IDA-PBC control for weakly-coupled electromechanical systems. Automatica vol. 115 108880 (2020) – 10.1016/j.automatica.2020.108880
- Sun, W. & Lv, X. Practical Finite-Time Fuzzy Control for Hamiltonian Systems via Adaptive Event-Triggered Approach. International Journal of Fuzzy Systems vol. 22 35–45 (2019) – 10.1007/s40815-019-00773-0
- Uddin, M. N., Zhai, Z. & Amin, I. K. Port Controlled Hamilton With Dissipation-Based Speed Control of IPMSM Drive. IEEE Transactions on Power Electronics vol. 35 1742–1752 (2020) – 10.1109/tpel.2019.2918679
- Van der Schaft, (2000)
- Wang, Predictor-based fixed-time LOS path following control of underactuated USV with unknown disturbances. IEEE Trans. Intell. Veh. (2023)
- Yuzhen Wang, Daizhan Cheng, Chunwen Li & You Ge. Dissipative hamiltonian realization and energy-based L/sub 2/-disturbance attenuation control of multimachine power systems. IEEE Transactions on Automatic Control vol. 48 1428–1433 (2003) – 10.1109/tac.2003.815037
- Wei, A., Wang, Z., Mu, R. & Zhang, X. Finite‐time adaptive control for port‐controlled Hamiltonian systems with parametric perturbations. International Journal of Adaptive Control and Signal Processing vol. 36 802–817 (2022) – 10.1002/acs.3373
- Wu, Y., Yang, X., Yan, H., Chadli, M. & Wang, Y. Adaptive Fuzzy Event-Triggered Sliding-Mode Control for Uncertain Euler–Lagrange Systems With Performance Specifications. IEEE Transactions on Fuzzy Systems vol. 31 1566–1579 (2023) – 10.1109/tfuzz.2022.3205777
- Yaghmaei, A. & Yazdanpanah, M. J. Structure Preserving Observer Design for Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 64 1214–1220 (2019) – 10.1109/tac.2018.2847904
- Yu, S. & Long, X. Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode. Automatica vol. 54 158–165 (2015) – 10.1016/j.automatica.2015.02.001
- Zhang, J., Yu, S., Wu, D. & Yan, Y. Nonsingular fixed-time terminal sliding mode trajectory tracking control for marine surface vessels with anti-disturbances. Ocean Engineering vol. 217 108158 (2020) – 10.1016/j.oceaneng.2020.108158
- Zhang, J.-X. & Yang, G.-H. Fault-Tolerant Fixed-Time Trajectory Tracking Control of Autonomous Surface Vessels With Specified Accuracy. IEEE Transactions on Industrial Electronics vol. 67 4889–4899 (2020) – 10.1109/tie.2019.2931242
- Zhou, B., Huang, B., Su, Y., Zheng, Y. & Zheng, S. Fixed-time neural network trajectory tracking control for underactuated surface vessels. Ocean Engineering vol. 236 109416 (2021) – 10.1016/j.oceaneng.2021.109416