Authors

Xinggui Liu, Xiaofeng Liao

Abstract

In this paper, the locally fixed-time and globally fixed-time \( \mathcal {H}{\infty } \) control problems for the port-controlled Hamiltonian (PCH) systems are investigated via the interconnection and damping assignment passivity-based control (IDA-PBC) technique. Compared with finite-time stabilization, where the convergence time of the closed-loop system’s states relies on the initial values, the settling time of fixed-time stabilization can be adjusted to achieve desired equilibrium point regardless of initial conditions. The concepts of fixed-time \( \mathcal {H}{\infty } \) control, fixed-time stability region (or region of attraction), and fixed-time stability boundary are presented in this paper, and the criterions of globally fixed-time attractivity of a prespecified locally fixed-time stability region are obtained. Combining the locally fixed-time stability of an equilibrium point and the globally fixed-time attractivity of a prespecified fixed-time stability region, the globally fixed-time \( \mathcal {H}{\infty } \) control problem of PCH system is effectively solved. Two novel control laws are designed to deal with the globally fixed-time \( \mathcal {H}{\infty } \) control problem, and the conservativeness in estimating the settling time is also briefly discussed. An illustrative example shows that the theoretical results obtained in this paper work very well in the fixed-time \( \mathcal {H}_{\infty } \) control design for PCH systems.

Citation

  • Journal: IEEE Transactions on Automatic Control
  • Year: 2019
  • Volume: 64
  • Issue: 7
  • Pages: 2753–2765
  • Publisher: Institute of Electrical and Electronics Engineers (IEEE)
  • DOI: 10.1109/tac.2018.2874768

BibTeX

@article{Liu_2019,
  title={{Fixed-Time $\mathcal {H}_{\infty
}$ Control for Port-Controlled Hamiltonian Systems}},
  volume={64},
  ISSN={2334-3303},
  DOI={10.1109/tac.2018.2874768},
  number={7},
  journal={IEEE Transactions on Automatic Control},
  publisher={Institute of Electrical and Electronics Engineers (IEEE)},
  author={Liu, Xinggui and Liao, Xiaofeng},
  year={2019},
  pages={2753--2765}
}

Download the bib file

References

  • van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
  • Yang, X., Lam, J., Ho, D. W. C. & Feng, Z. Fixed-Time Synchronization of Complex Networks With Impulsive Effects via Nonchattering Control. IEEE Transactions on Automatic Control vol. 62 5511–5521 (2017) – 10.1109/tac.2017.2691303
  • Wan, Y., Cao, J., Wen, G. & Yu, W. Robust fixed-time synchronization of delayed Cohen–Grossberg neural networks. Neural Networks vol. 73 86–94 (2016) – 10.1016/j.neunet.2015.10.009
  • Zuo, Z. Non‐singular fixed‐time terminal sliding mode control of non‐linear systems. IET Control Theory & Applications vol. 9 545–552 (2015) – 10.1049/iet-cta.2014.0202
  • Bhat, S. P. & Bernstein, D. S. Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Transactions on Automatic Control vol. 43 678–682 (1998) – 10.1109/9.668834
  • Bhat, S. P. & Bernstein, D. S. Finite-Time Stability of Continuous Autonomous Systems. SIAM Journal on Control and Optimization vol. 38 751–766 (2000) – 10.1137/s0363012997321358
  • Haimo, V. T. Finite Time Controllers. SIAM Journal on Control and Optimization vol. 24 760–770 (1986) – 10.1137/0324047
  • Weiss, L. & Infante, E. Finite time stability under perturbing forces and on product spaces. IEEE Transactions on Automatic Control vol. 12 54–59 (1967) – 10.1109/tac.1967.1098483
  • Sun, L., Feng, G. & Wang, Y. Finite-time stabilization and H control for a class of nonlinear Hamiltonian descriptor systems with application to affine nonlinear descriptor systems. Automatica vol. 50 2090–2097 (2014) – 10.1016/j.automatica.2014.05.031
  • wang, Finite-time stabilization of port-controlled Hamiltonian systems with application to nonlinear affine systems. Proc Amer Control Conf (2008)
  • Yang, R. & Wang, Y. Finite-time stability analysis and H control for a class of nonlinear time-delay Hamiltonian systems. Automatica vol. 49 390–401 (2013) – 10.1016/j.automatica.2012.11.034
  • Efimov, D., Polyakov, A., Fridman, E., Perruquetti, W. & Richard, J.-P. Comments on finite-time stability of time-delay systems. Automatica vol. 50 1944–1947 (2014) – 10.1016/j.automatica.2014.05.010
  • Cruz-Zavala, E., Moreno, J. A. & Fridman, L. Uniform Second-Order Sliding Mode Observer for mechanical systems. 2010 11th International Workshop on Variable Structure Systems (VSS) 14–19 (2010) doi:10.1109/vss.2010.5544656 – 10.1109/vss.2010.5544656
  • Engel, R. & Kreisselmeier, G. A continuous-time observer which converges in finite time. IEEE Transactions on Automatic Control vol. 47 1202–1204 (2002) – 10.1109/tac.2002.800673
  • macchelli, Port Hamiltonian systems: A unified approach for modeling and control finite and infinite dimensional physical systems. (2003)
  • Zuo, Z. & Tie, L. A new class of finite-time nonlinear consensus protocols for multi-agent systems. International Journal of Control vol. 87 363–370 (2013) – 10.1080/00207179.2013.834484
  • Multidomain modeling of nonlinear networks and systems. IEEE Control Systems vol. 29 28–59 (2009) – 10.1109/mcs.2009.932927
  • Parsegov, S. E., Polyakov, A. E. & Shcherbakov, P. S. Fixed-time Consensus Algorithm for Multi-agent Systems with Integrator Dynamics. IFAC Proceedings Volumes vol. 46 110–115 (2013) – 10.3182/20130925-2-de-4044.00055
  • Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
  • Dörfler, F., Johnsen, J. K. & Allgöwer, F. An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control vol. 19 1413–1426 (2009)10.1016/j.jprocont.2009.07.015
  • Zuo, Z. & Tie, L. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. International Journal of Systems Science vol. 47 1366–1375 (2014) – 10.1080/00207721.2014.925608
  • Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control vol. 47 1218–1233 (2002) – 10.1109/tac.2002.800770
  • Transient stabilization of multimachine power systems with nontrivial transfer conductances. IEEE Transactions on Automatic Control vol. 50 60–75 (2005) – 10.1109/tac.2004.840477
  • Couenne, F., Jallut, C., Maschke, B., Tayakout, M. & Breedveld, P. Bond graph for dynamic modelling in chemical engineering. Chemical Engineering and Processing: Process Intensification vol. 47 1994–2003 (2008) – 10.1016/j.cep.2007.09.006
  • van der Schaft, A. J. L/sub 2/-gain analysis of nonlinear systems and nonlinear state-feedback H/sub infinity / control. IEEE Transactions on Automatic Control vol. 37 770–784 (1992) – 10.1109/9.256331
  • Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002)10.1016/s0005-1098(01)00278-3
  • James, M. R. Finite time observers and observability. 29th IEEE Conference on Decision and Control 770–771 vol.2 (1990) doi:10.1109/cdc.1990.203692 – 10.1109/cdc.1990.203692
  • Andrieu, V., Praly, L. & Astolfi, A. Homogeneous Approximation, Recursive Observer Design, and Output Feedback. SIAM Journal on Control and Optimization vol. 47 1814–1850 (2008) – 10.1137/060675861
  • Raff, T. & Allgöwer, F. An Observer that Converges in Finite Time Due to Measurement-based State Updates. IFAC Proceedings Volumes vol. 41 2693–2695 (2008) – 10.3182/20080706-5-kr-1001.00453
  • Polyakov, A., Efimov, D. & Perruquetti, W. Finite-time and fixed-time stabilization: Implicit Lyapunov function approach. Automatica vol. 51 332–340 (2015) – 10.1016/j.automatica.2014.10.082
  • Polyakov, A. Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems. IEEE Transactions on Automatic Control vol. 57 2106–2110 (2012) – 10.1109/tac.2011.2179869
  • Parsegov, S., Polyakov, A. & Shcherbakov, P. Nonlinear fixed-time control protocol for uniform allocation of agents on a segment. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) 7732–7737 (2012) doi:10.1109/cdc.2012.6426570 – 10.1109/cdc.2012.6426570
  • Polyakov, A., Efimov, D. & Perruquetti, W. Robust stabilization of MIMO systems in finite/fixed time. International Journal of Robust and Nonlinear Control vol. 26 69–90 (2015) – 10.1002/rnc.3297