Exponential stability of boundary controlled port Hamiltonian systems with dynamic feedback
Authors
Hector Ramirez, Hans Zwart, Yann Le Gorrec
Abstract
In this paper it is shown that an input strictly passive linear finite dimensional port-Hamiltonian controller exponentially stabilizes a large class of boundary control systems. This follows since the finite dimensional controller dissipates the energy flowing through the boundaries of the infinite dimensional system. The assumptions on the controller is that it is input strictly passive and that it is exponentially stable. The result is illustrated on the model of a boundary controlled DNA-manipulation process.
Keywords
Boundary control systems; infinite dimensional port Hamiltonian systems; exponential stability; passivity
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2013
- Volume: 46
- Issue: 26
- Pages: 115–120
- Publisher: Elsevier BV
- DOI: 10.3182/20130925-3-fr-4043.00085
- Note: 1st IFAC Workshop on Control of Systems Governed by Partial Differential Equations
BibTeX
@article{Ramirez_2013,
title={{Exponential stability of boundary controlled port Hamiltonian systems with dynamic feedback}},
volume={46},
ISSN={1474-6670},
DOI={10.3182/20130925-3-fr-4043.00085},
number={26},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Ramirez, Hector and Zwart, Hans and Le Gorrec, Yann},
year={2013},
pages={115--120}
}
References
- Boudaoud, M., Haddab, Y. & Le Gorrec, Y. Modeling and Optimal Force Control of a Nonlinear Electrostatic Microgripper. IEEE/ASME Trans. Mechatron. 18, 1130–1139 (2013) – 10.1109/tmech.2012.2197216
- Brogliato, B., Maschke, B., Lozano, R. & Egeland, O. Dissipative Systems Analysis and Control. Communications and Control Engineering (Springer London, 2007). doi:10.1007/978-1-84628-517-2 – 10.1007/978-1-84628-517-2
- Curtain, (1995)
- Jacob, (2012)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530
- Ramirez, H. & Le Gorrec, Y. Boundary port Hamiltonian control of a class of nanotweezers. 2013 European Control Conference (ECC) 566–571 (2013) doi:10.23919/ecc.2013.6669834 – 10.23919/ecc.2013.6669834
- Ramirez, H. & Le Gorrec, Y. Exponential stability of a class of PDE’s with dynamic boundary control. 2013 American Control Conference 3290–3295 (2013) doi:10.1109/acc.2013.6580339 – 10.1109/acc.2013.6580339
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Trans. Automat. Contr. 54, 142–147 (2009) – 10.1109/tac.2008.2007176
- Villegas, J. A., Zwart, H., Le Gorrec, Y., Maschke, B. & van der Schaft, A. J. Stability and Stabilization of a Class of Boundary Control Systems. Proceedings of the 44th IEEE Conference on Decision and Control 3850–3855 doi:10.1109/cdc.2005.1582762 – 10.1109/cdc.2005.1582762