Exponential stability for infinite-dimensional non-autonomous port-Hamiltonian Systems
Authors
Abstract
We study the non-autonomous version of an infinite-dimensional linear port-Hamiltonian system on an interval [ a , b ] . Employing abstract results on evolution families, we show C 1 -well-posedness of the corresponding Cauchy problem, and thereby existence and uniqueness of classical solutions for sufficiently regular initial data. Further, we demonstrate that a dissipation condition in the style of the dissipation condition sufficient for uniform exponential stability in the autonomous case also leads to a uniform exponential decay rate of the energy in this non-autonomous setting.
Keywords
Infinite-dimensional port-Hamiltonian system; Non-autonomous Cauchy problem; Evolution family; Well-posedness; Uniform exponential stability
Citation
- Journal: Systems & Control Letters
- Year: 2020
- Volume: 144
- Issue:
- Pages: 104757
- Publisher: Elsevier BV
- DOI: 10.1016/j.sysconle.2020.104757
BibTeX
@article{Augner_2020,
title={{Exponential stability for infinite-dimensional non-autonomous port-Hamiltonian Systems}},
volume={144},
ISSN={0167-6911},
DOI={10.1016/j.sysconle.2020.104757},
journal={Systems & Control Letters},
publisher={Elsevier BV},
author={Augner, Björn and Laasri, Hafida},
year={2020},
pages={104757}
}
References
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Jacob, Linear port-hamiltonian systems on infinite-dimensional spaces. (2012)
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory vol. 3 207–229 (2014) – 10.3934/eect.2014.3.207
- Villegas, (2007)
- Zwart, H., Le Gorrec, Y., Maschke, B. & Villegas, J. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control, Optimisation and Calculus of Variations vol. 16 1077–1093 (2009) – 10.1051/cocv/2009036
- Villegas, J. A., Le Gorrec, Y., Zwart, H. & van der Schaft, A. J. BOUNDARY CONTROL SYSTEMS AND THE SYSTEM NODE. IFAC Proceedings Volumes vol. 38 308–313 (2005) – 10.3182/20050703-6-cz-1902.00622
- Jacob, B., Morris, K. & Zwart, H. C 0-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain. Journal of Evolution Equations vol. 15 493–502 (2015) – 10.1007/s00028-014-0271-1
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Engel, (2000)
- Schnaubelt, R. & Weiss, G. Two classes of passive time-varying well-posed linear systems. Mathematics of Control, Signals, and Systems vol. 21 265–301 (2010) – 10.1007/s00498-010-0049-0
- Augner, A., Jacob, B. & Laasri, H. On the right multiplicative perturbation of non-autonomous $L^p$-maximal regularity. Journal of Operator Theory vol. 74 391–415 (2015) – 10.7900/jot.2014jul31.2064
- Volterra, (1938)
- KATO, T. Integration of the equation of evolution in a Banach space. Journal of the Mathematical Society of Japan vol. 5 (1953) – 10.2969/jmsj/00520208
- Kato, Linear evolution equations of hyperbolic type. J. Fac. Sci. Univ. Tokyo (1970)
- Tanabe, (1979)
- Sobolevskii, Equations of parabolic type in a Banach space. Trudy Moskov. Mat. Obsc. (1961)
- Acquistapace, A unified approach to abstract linear nonautonomous parabolic equations. Rend. Sem. Univ. Padova (1987)
- Howland, J. S. Stationary scattering theory for time-dependent Hamiltonians. Mathematische Annalen vol. 207 315–335 (1974) – 10.1007/bf01351346
- Chicone, Evolution semigroups in dynamical systems and differential equations. (1999)
- Nagel, Wellposedness for nonautonomous abstract Cauchy problems. (2002)
- Schnaubelt, Well-posedness and asymptotic behaviour of nonautonomous evolution equation. (2002)
- Lions, (1961)
- Lions, (1972)
- Batty, C. J. K., Chill, R. & Tomilov, Y. Strong Stability of Bounded Evolution Families and Semigroups. Journal of Functional Analysis vol. 193 116–139 (2002) – 10.1006/jfan.2001.3917
- Haraux, A. Asymptotic behavior of trajectories for some nonautonomous, almost periodic processes. Journal of Differential Equations vol. 49 473–483 (1983) – 10.1016/0022-0396(83)90008-6
- Paunonen, L. & Seifert, D. Asymptotics for periodic systems. Journal of Differential Equations vol. 266 7152–7172 (2019) – 10.1016/j.jde.2018.11.028
- Cox, S. & Zuazua, E. The rate at which energy decays in a string damped at one end. Indiana University Mathematics Journal vol. 44 0–0 (1995) – 10.1512/iumj.1995.44.2001
- Nickel, (1996)