Discrete-time port-Hamiltonian systems based on Gauss-Legendre collocation
Authors
Paul Kotyczka, Laurent Lefèvre
Abstract
We introduce a family of discrete-time lossless input-state-output port-Hamiltonian systems based on numerical time integration with symplectic collocation schemes. For systems with non-zero input, symplecticity extends to the conservation of a discrete energy balance, based on which a discrete-time Dirac structure is defined. Using Gauss-Legendre collocation, the corresponding quadrature formula allows to quantify the discretization error for the supplied energy. On a linear example, backward error analysis and numerical experiments are performed in order to illustrate the accuracy of the resulting structure-preserving integration schemes.
Keywords
Port-Hamiltonian systems; Dirac structures; discrete-time systems; geometric numerical integration; symplectic methods
Citation
- Journal: IFAC-PapersOnLine
- Year: 2018
- Volume: 51
- Issue: 3
- Pages: 125–130
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2018.06.035
- Note: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018
BibTeX
@article{Kotyczka_2018,
title={{Discrete-time port-Hamiltonian systems based on Gauss-Legendre collocation}},
volume={51},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2018.06.035},
number={3},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Kotyczka, Paul and Lefèvre, Laurent},
year={2018},
pages={125--130}
}
References
- Aoues, S., Eberard, D. & Marquis-Favre, W. Canonical interconnection of discrete linear port-Hamiltonian systems. 52nd IEEE Conference on Decision and Control 3166–3171 (2013) doi:10.1109/cdc.2013.6760366 – 10.1109/cdc.2013.6760366
- Brewer, J. Kronecker products and matrix calculus in system theory. IEEE Transactions on Circuits and Systems vol. 25 772–781 (1978) – 10.1109/tcs.1978.1084534
- Duindam, (2009)
- Falaize, A. & Hélie, T. Passive Guaranteed Simulation of Analog Audio Circuits: A Port-Hamiltonian Approach. Applied Sciences vol. 6 273 (2016) – 10.3390/app6100273
- Gören-Sümer, L. & Yalçιn, Y. Gradient Based Discrete-Time Modeling and Control of Hamiltonian Systems. IFAC Proceedings Volumes vol. 41 212–217 (2008) – 10.3182/20080706-5-kr-1001.00036
- Hairer, (2006)
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Leimkuhler, (2004)
- Lew, A., Marsden, J. E., Ortiz, M. & West, M. Variational time integrators. International Journal for Numerical Methods in Engineering vol. 60 153–212 (2004) – 10.1002/nme.958
- Talasila, V., Clemente-Gallardo, J. & van der Schaft, A. J. Discrete port-Hamiltonian systems. Systems & Control Letters vol. 55 478–486 (2006) – 10.1016/j.sysconle.2005.10.001
- van der Schaft, (2017)