Authors

Champ C. Darabundit, Gary Scavone

Abstract

Time-domain simulation of woodwind instruments typically involves the development of separate discrete-time sub-models for the excitation mechanism and the resonator. These components have largely been modeled via digital waveguide or finite-difference time-domain (FDTD) methods. We present a separate approach based on the modular and energy-based port-Hamiltonian system (PHS) framework. We recast the three main components of a woodwind instrument—the single-reed, the bore, and the tonehole—as PHS models and incorporate novel elements in each derivation. In the beating reed model, we make use of recent work on energy quadratization to formulate a linearly implicit scheme of the nonlinear Hunt-Crossley contact force coupled to a nonlinear Bernoulli flow. In the horn model, we discretize a distributed PHS representing the horn equation with a generalized symplectic Störmer-Verlet scheme, verifying previously proposed FDTD schemes. In the tonehole model, we propose a new low-frequency model of the tonehole and model note transitions with a switching PHS. The benefit of describing each element as a PHS is demonstrated by the ability to interconnect all sub-models in a modular and energy-conserving manner to simulate a complete instrument. Simulations are performed on a test instrument and the numerical stability of the overall scheme is demonstrated.

Citation

  • Journal: Frontiers in Signal Processing
  • Year: 2025
  • Volume: 5
  • Issue:
  • Pages:
  • Publisher: Frontiers Media SA
  • DOI: 10.3389/frsip.2025.1519450

BibTeX

@article{Darabundit_2025,
  title={{Discrete port-Hamiltonian system model of a single-reed woodwind instrument}},
  volume={5},
  ISSN={2673-8198},
  DOI={10.3389/frsip.2025.1519450},
  journal={Frontiers in Signal Processing},
  publisher={Frontiers Media SA},
  author={Darabundit, Champ C. and Scavone, Gary},
  year={2025}
}

Download the bib file

References

  • Avanzini, Modeling the mechanical response of the reed-mouthpiece-lip system of a clarinet. part i. a one-dimensional distributed model. Acta Acustica united Acustica (2004)
  • Backus, J. Small-Vibration Theory of the Clarinet. The Journal of the Acoustical Society of America vol. 35 305–313 (1963) – 10.1121/1.1918458
  • Berners, Acoustic and signal procesing Techniques for physical Modeling of brass instruments (1999)
  • Bilbao, Direct simulation for reed wind instruments. (2008)
  • Bilbao, S. Numerical Sound Synthesis. (2009) doi:10.1002/9780470749012 – 10.1002/9780470749012
  • Bilbao, S. & Chick, J. Finite difference time domain simulation for the brass instrument bore. The Journal of the Acoustical Society of America vol. 134 3860–3871 (2013) – 10.1121/1.4822479
  • Bilbao, S. & Harrison, R. Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section. The Journal of the Acoustical Society of America vol. 140 728–740 (2016) – 10.1121/1.4959025
  • Bilbao, S., Harrison, R., Kergomard, J., Lombard, B. & Vergez, C. Passive models of viscothermal wave propagation in acoustic tubes. The Journal of the Acoustical Society of America vol. 138 555–558 (2015) – 10.1121/1.4926407
  • Bilbao, Numerical modeling of collisions in musical instruments. Acta Acustica United Acustica ()
  • Caussé, R., Kergomard, J. & Lurton, X. Input impedance of brass musical instruments—Comparison between experiment and numerical models. The Journal of the Acoustical Society of America vol. 75 241–254 (1984) – 10.1121/1.390402
  • Chaigne, A. & Kergomard, J. Acoustics of Musical Instruments. Modern Acoustics and Signal Processing (Springer New York, 2016). doi:10.1007/978-1-4939-3679-3 – 10.1007/978-1-4939-3679-3
  • Chatziioannou, Forward and inverse modelling of single-reed woodwind instruments with application to digital sound synthesis (2010)
  • Chatziioannou, Structure preserving algorithms for simulation of linearly damped acoustic systems. J. Numer. Analysis, Industrial, Appl. Math. (JNAIAM) (2019)
  • Chatziioannou, V., Schmutzhard, S., Pàmies-Vilà, M. & Hofmann, A. Investigating Clarinet Articulation Using a Physical Model and an Artificial Blowing Machine. Acta Acustica united with Acustica vol. 105 682–694 (2019) – 10.3813/aaa.919348
  • Chatziioannou, V. & van Walstijn, M. Estimation of Clarinet Reed Parameters by Inverse Modelling. Acta Acustica united with Acustica vol. 98 629–639 (2012) – 10.3813/aaa.918543
  • Dalmont, Experimental determination of the equivalent circuit of an open side hole: linear and nonlinear behaviour. Acta Acustica united Acustica (2002)
  • Dubos, Theory of sound propagation in a duct with a branched modal decomposition. Acustica united Acta Acoust. (1999)
  • Ducceschi, M., Bilbao, S., Willemsen, S. & Serafin, S. Linearly-implicit schemes for collisions in musical acoustics based on energy quadratisation. The Journal of the Acoustical Society of America vol. 149 3502–3516 (2021) – 10.1121/10.0005008
  • Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-010.1007/978-3-642-03196-0
  • Falaize, A. & Hélie, T. Passive Guaranteed Simulation of Analog Audio Circuits: A Port-Hamiltonian Approach. Applied Sciences vol. 6 273 (2016)10.3390/app6100273
  • Falaize, A. & Hélie, T. Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano. Journal of Sound and Vibration vol. 390 289–309 (2017)10.1016/j.jsv.2016.11.008
  • Fletcher, N. H. Autonomous vibration of simple pressure-controlled valves in gas flows. The Journal of the Acoustical Society of America vol. 93 2172–2180 (1993) – 10.1121/1.406857
  • Goldstein, Classical mechanics (1980)
  • Le Gorrec, Y. & Matignon, D. Coupling between hyperbolic and diffusive systems: A port-Hamiltonian formulation. European Journal of Control vol. 19 505–512 (2013)10.1016/j.ejcon.2013.09.003
  • Hairer, Geometric Numerical Integration: structure-preserving algorithms for ordinary different equations (2000)
  • Hairer, E., Lubich, C. & Wanner, G. Geometric numerical integration illustrated by the Störmer–Verlet method. Acta Numerica vol. 12 399–450 (2003)10.1017/s0962492902000144
  • Hairer, E., McLachlan, R. I. & Razakarivony, A. Achieving Brouwer’s law with implicit Runge–Kutta methods. BIT Numerical Mathematics vol. 48 231–243 (2008) – 10.1007/s10543-008-0170-3
  • Harrison-Harsley, Physical modelling of brass instruments using finite-difference time-domain methods (2018)
  • Hélie, Elementary tools on Port-Hamiltonian Systems with applications to audio/acoustics. 2nd spring School on Theory and Applications of port-Hamiltonian systems (2022)
  • Hélie, Corde non linéaire amortie: fomulation Hamiltonienne à ports, réduction d’ordre exacte et simulation à passivité garantie. 13ème Congrès Français d’Acoustique (2016)
  • Kailath, Linear systems (1980)
  • Keefe, D. H. Theory of the single woodwind tone hole. The Journal of the Acoustical Society of America vol. 72 676–687 (1982) – 10.1121/1.388248
  • Keefe, D. H. Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and nonisothermal boundary conditions. The Journal of the Acoustical Society of America vol. 75 58–62 (1984) – 10.1121/1.390300
  • Lefebvre, Computational acoustic methods for the design of woodwind instruments (2010)
  • Lefebvre, A. & Scavone, G. P. Characterization of woodwind instrument toneholes with the finite element method. The Journal of the Acoustical Society of America vol. 131 3153–3163 (2012) – 10.1121/1.3685481
  • Lopes, Approche passive pour la modeélisation, la simulation et l’étude d’un banc de test robotisé pour les instruments de type cuivre. (2016)
  • Lopes, N. & Hélie, T. Energy Balanced Model of a Jet Interacting With a Brass Player’s Lip. Acta Acustica united with Acustica vol. 102 141–154 (2016)10.3813/aaa.918931
  • Lopes, N., Hélie, T. & Falaize, A. Explicit second-order accurate method for the passive guaranteed simulation of port-Hamiltonian systems. IFAC-PapersOnLine vol. 48 223–228 (2015)10.1016/j.ifacol.2015.10.243
  • Maschke, Port-controlled Hamiltonian systems: modelling origins and systemtheoretic properties. Nonlinear control systems design 1992 (1993)
  • McIntyre, M. E., Schumacher, R. T. & Woodhouse, J. On the oscillations of musical instruments. The Journal of the Acoustical Society of America vol. 74 1325–1345 (1983) – 10.1121/1.390157
  • Mignot, Stable relization of a delay system modeling a convergent acoustic cone. (2008)
  • Mignot, R., Helie, T. & Matignon, D. Digital Waveguide Modeling for Wind Instruments: Building a State–Space Representation Based on the Webster–Lokshin Model. IEEE Transactions on Audio, Speech, and Language Processing vol. 18 843–854 (2010) – 10.1109/tasl.2009.2038671
  • Müller, Time-continuous power-balanced simulation of nonlinear audio circuits: realtime processing framework and aliasing rejection (2021)
  • Müller, Fully-implicit algebro-differential parameterization of circuits. Proceedings of the 23 (2021)
  • Sanz-Serna, J. M. & Calvo, M. P. Numerical Hamiltonian Problems. (Springer US, 1994). doi:10.1007/978-1-4899-3093-4 – 10.1007/978-1-4899-3093-4
  • Scavone, An acoustic analysis of single-reed woodwind instruments with an Emphasis on design and performance issues and digital waveguide modeling techniques (1997)
  • Scavone, Real-time computer modeling of woodwind instruments. (1998)
  • Scavone, G. An open-source project for wind instrument modeling using digital waveguides. The Journal of the Acoustical Society of America vol. 155 A195–A195 (2024) – 10.1121/10.0027278
  • Shen, J., Xu, J. & Yang, J. The scalar auxiliary variable (SAV) approach for gradient flows. Journal of Computational Physics vol. 353 407–416 (2018) – 10.1016/j.jcp.2017.10.021
  • Smith, Efficient simulation of the reed-bore and bow-string mechanisms. Proceedings of the 12th International Conference on music computing (1986)
  • Smith, J. O., join(‘ ’. Physical Modeling Using Digital Waveguides. Computer Music Journal vol. 16 74 (1992) – 10.2307/3680470
  • Smith, Physical audio signal processing (2010)
  • Torin, Percussion instrument modelling in 3D: sound synthesis through time domain numerical simulation (2015)
  • Välimäki, Discrete-time modeling of acoustic tubes using fractional delay filters (1995)
  • van der Schaft, Port-Hamiltonian systems: an introductory survey. (2006)
  • van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014)10.1561/2600000002
  • van Walstijn, Modelling the mechanical response of the reed-mouthpiece-lip system of a clarinet. part ii: a lumped model approximation. Acta Acustica united Acustica (2007)
  • van Walstijn, A real-time synthesis oriented tanpura model. Proceedings of the 19 (2016)
  • van Walstijn, M. & Campbell, M. Discrete-time modeling of woodwind instrument bores using wave variables. The Journal of the Acoustical Society of America vol. 113 575–585 (2003) – 10.1121/1.1515776
  • van Walstijn, M., Chatziioannou, V. & Athanasopoulos, N. An Explicit Scheme for Energy-Stable Simulation of Mass-Barrier Collisions with Contact Damping and Dry Friction. IFAC-PapersOnLine vol. 58 214–219 (2024) – 10.1016/j.ifacol.2024.08.283
  • van Walstijn, M., Chatziioannou, V. & Bhanuprakash, A. Implicit and explicit schemes for energy-stable simulation of string vibrations with collisions: Refinement, analysis, and comparison. Journal of Sound and Vibration vol. 569 117968 (2024) – 10.1016/j.jsv.2023.117968
  • van Walstijn, The wave digital tonehole model. (2000)
  • Wendlandt, J. M. & Marsden, J. E. Mechanical integrators derived from a discrete variational principle. Physica D: Nonlinear Phenomena vol. 106 223–246 (1997) – 10.1016/s0167-2789(97)00051-1
  • Wetzel, Power balanced time-varying lumped parameter model of a vocal tract: modeling and simulation. 26th International Conference on sound and Vibration (2019)
  • Willemsen, The Emulated ensemble: real-time simulation of musical instruments using finite-difference time-domain methods (2021)
  • YALÇIN, Y., GÖREN SÜMER, L. & KURTULAN, S. Discrete-time modeling of Hamiltonian systems. TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES vol. 23 149–170 (2015) – 10.3906/elk-1212-23
  • Yang, X. Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. Journal of Computational Physics vol. 327 294–316 (2016) – 10.1016/j.jcp.2016.09.029
  • Zhao, J., Wang, Q. & Yang, X. Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. International Journal for Numerical Methods in Engineering vol. 110 279–300 (2016) – 10.1002/nme.5372
  • Zwikker, Sound absorbing materials (1949)