Explicit second-order accurate method for the passive guaranteed simulation of port-Hamiltonian systems
Authors
N. Lopes, T. Hélie, A. Falaize
Abstract
This paper presents a method for the passive guaranteed simulation of a class of finite-dimensional nonlinear port-Hamiltonian systems. This method combines two processes to reach both the second order accuracy and explicit computations. First, we design a one-step two- stage implicit numerical method for Port-Hamiltonian systems that preserves passivity. Second, a change of state is proposed to yield an explicit computation. It requires assumptions on the Hamiltonian variations. The complete method is illustrated on two basic examples for which these assumptions are fulfilled.
Keywords
energy storage; port-Hamiltonian systems; nonlinear model; nonlinear model; partial differential equations; passive simulation; consistency
Citation
- Journal: IFAC-PapersOnLine
- Year: 2015
- Volume: 48
- Issue: 13
- Pages: 223–228
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2015.10.243
- Note: 5th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2015- Lyon, France, 4–7 July 2015
BibTeX
@article{Lopes_2015,
title={{Explicit second-order accurate method for the passive guaranteed simulation of port-Hamiltonian systems}},
volume={48},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2015.10.243},
number={13},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Lopes, N. and Hélie, T. and Falaize, A.},
year={2015},
pages={223--228}
}
References
- Bilbao, S. Numerical Sound Synthesis. (2009) doi:10.1002/9780470749012 – 10.1002/9780470749012
- C. E. Vilain Physical Audio Signal Processing: for Virtual Musical Instruments and Digital Audio Effects. Phd, Institut National Polytechnique de Grenoble.
- Iserles, A. & Zanna, A. Preserving algebraic invariants with Runge–Kutta methods. Journal of Computational and Applied Mathematics vol. 125 69–81 (2000) – 10.1016/s0377-0427(00)00459-3
- Munthe-Kaas, H. Runge-Kutta methods on Lie groups. BIT Numerical Mathematics vol. 38 92–111 (1998) – 10.1007/bf02510919
- Del Buono, N. & Mastroserio, C. Explicit methods based on a class of four stage fourth order Runge–Kutta methods for preserving quadratic laws. Journal of Computational and Applied Mathematics vol. 140 231–243 (2002) – 10.1016/s0377-0427(01)00398-3
- YALÇIN, Y., GÖREN SÜMER, L. & KURTULAN, S. Discrete-time modeling of Hamiltonian systems. TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES vol. 23 149–170 (2015) – 10.3906/elk-1212-23
- S. Aoues Schémas dintégration dédiés à létude, lanalyse et la synthése dans le formalisme Hamiltonien à ports Thése (2014)
- A. Falaize, N. Lopes, T. H elie, D. Matignon, B. Maschke Energy-balanced models for acoustic and audio systems: a port-hamiltonian approach. In Unfold Mechanics for Sounds and Music, 18. Paris, France.
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- J.P. Demailly Analyse numérique et équations différentielles. EDP Sciences, 2006