Control of Beam Vibrations by Casimir Functions
Authors
Hubert Rams, Markus Schöberl, Kurt Schlacher
Abstract
This contribution presents a port-Hamiltonian (pH) framework for the modeling and control of a certain class of distributed-parameter systems. Since the proposed pH-formulation can be seen as a direct adoption of the calculus of variations on jet bundles, it is especially suited for mechanical systems exhibiting a variational character. Besides the pH-framework, an energy-based control scheme making heavy use of structural invariants (casimir functions) is presented on the example of a boundary-controlled Euler–Bernoulli beam.
Citation
- ISBN: 9783319908830
- Publisher: Springer International Publishing
- DOI: 10.1007/978-3-319-90884-7_15
BibTeX
@inbook{Rams_2019,
title={{Control of Beam Vibrations by Casimir Functions}},
ISBN={9783319908847},
DOI={10.1007/978-3-319-90884-7_15},
booktitle={{Dynamics and Control of Advanced Structures and Machines}},
publisher={Springer International Publishing},
author={Rams, Hubert and Schöberl, Markus and Schlacher, Kurt},
year={2019},
pages={137--145}
}References
- R Abraham, Foundations of Mechanics (1994)
- WM Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry (1986)
- Giachetta, G., Mangiarotti, L. & Sardanashvily, G. New Lagrangian and Hamiltonian Methods in Field Theory. (1997) doi:10.1142/2199 – 10.1142/2199
- Z-H Luo, Stability and Stabilization of Infinite Dimensional Systems with Applications (1998)
- L Meirovitch, Analytical Methods in Vibrations (1967)
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- Rams, H. & Schoberl, M. On structural invariants in the energy based control of port-Hamiltonian systems with second-order Hamiltonian. 2017 American Control Conference (ACC) 1139–1144 (2017) doi:10.23919/acc.2017.7963106 – 10.23919/acc.2017.7963106
- Saunders, D. J. The Geometry of Jet Bundles. (1989) doi:10.1017/cbo9780511526411 – 10.1017/cbo9780511526411
- Schöberl, M. & Schlacher, K. Covariant formulation of the governing equations of continuum mechanics in an Eulerian description. Journal of Mathematical Physics 48, (2007) – 10.1063/1.2735444
- Schoberl, M. & Siuka, A. On Casimir functionals for field theories in Port-Hamiltonian description for control purposes. IEEE Conference on Decision and Control and European Control Conference 7759–7764 (2011) doi:10.1109/cdc.2011.6160430 – 10.1109/cdc.2011.6160430
- Schöberl, M. & Siuka, A. On the port-Hamiltonian representation of systems described by partial differential equations. IFAC Proceedings Volumes 45, 1–6 (2012) – 10.3182/20120829-3-it-4022.00001
- Schoberl, M. & Siuka, A. Analysis and comparison of port-Hamiltonian formulations for field theories - demonstrated by means of the Mindlin plate. 2013 European Control Conference (ECC) 548–553 (2013) doi:10.23919/ecc.2013.6669137 – 10.23919/ecc.2013.6669137
- Schöberl, M., Ennsbrunner, H. & Schlacher, K. Modelling of piezoelectric structures–a Hamiltonian approach. Mathematical and Computer Modelling of Dynamical Systems 14, 179–193 (2008) – 10.1080/13873950701844824
- Siuka, A., Schöberl, M. & Schlacher, K. Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta Mech 222, 69–89 (2011) – 10.1007/s00707-011-0510-2
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7