Contraction Theory and Differential Passivity in the port-Hamiltonian formalism
Authors
Mario Spirito, Bernhard Maschke, Yann Le Gorrec
Abstract
In this work, we recall the concept of contractive dynamics and its natural extension to the notion of Differential dissipativity/passivity via the use of the so-called prolonged (or extended) system dynamics, obtained by lifting the system to the tangent bundle of the underlying manifold. The new concept of dissipative Differential Hamiltonian dynamics is proposed providing a weaker notion of contractive dynamical system. Furthermore, the Differential Hamiltonian notion is extended to the definition of Differentially passive port-Hamiltonian system. We describe explicit conditions to exploit the ‘natural’ Differential Hamiltonian function as differential storage function for the port-Hamiltonian system dynamics.
Keywords
Contractive systems; Differential passivity; port-Hamiltonian systems; dissipative Hamiltonian systems; dissipative Differential Hamiltonian system
Citation
- Journal: IFAC-PapersOnLine
- Year: 2024
- Volume: 58
- Issue: 6
- Pages: 184–189
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2024.08.278
- Note: 8th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2024- Besançon, France, June 10 – 12, 2024
BibTeX
@article{Spirito_2024,
title={{Contraction Theory and Differential Passivity in the port-Hamiltonian formalism}},
volume={58},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2024.08.278},
number={6},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Spirito, Mario and Maschke, Bernhard and Le Gorrec, Yann},
year={2024},
pages={184--189}
}
References
- Andrieu, V., Jayawardhana, B. & Praly, L. Transverse Exponential Stability and Applications. IEEE Transactions on Automatic Control vol. 61 3396–3411 (2016) – 10.1109/tac.2016.2528050
- Angeli, D. A Lyapunov approach to incremental stability properties. IEEE Transactions on Automatic Control vol. 47 410–421 (2002) – 10.1109/9.989067
- Barabanov, N., Ortega, R. & Pyrkin, A. On contraction of time-varying port-Hamiltonian systems. Systems & Control Letters vol. 133 104545 (2019) – 10.1016/j.sysconle.2019.104545
- Brogliato, Dissipative systems analysis and control. Theory and Applications (2007)
- Camlibel, (2013)
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Crouch, (1987)
- Duindam, (2009)
- Forni, F. & Sepulchre, R. A Differential Lyapunov Framework for Contraction Analysis. IEEE Transactions on Automatic Control vol. 59 614–628 (2014) – 10.1109/tac.2013.2285771
- Forni, F. & Sepulchre, R. On differentially dissipative dynamical systems. IFAC Proceedings Volumes vol. 46 15–20 (2013) – 10.3182/20130904-3-fr-2041.00038
- Forni, (2013)
- Kawano, Y., Cucuzzella, M., Feng, S. & Scherpen, J. M. A. Krasovskii and shifted passivity based output consensus. Automatica vol. 155 111167 (2023) – 10.1016/j.automatica.2023.111167
- LOHMILLER, W. & SLOTINE, J.-J. E. On Contraction Analysis for Non-linear Systems. Automatica vol. 34 683–696 (1998) – 10.1016/s0005-1098(98)00019-3
- Maschke, (1993)
- Pavlov, A., Pogromsky, A., van de Wouw, N. & Nijmeijer, H. Convergent dynamics, a tribute to Boris Pavlovich Demidovich. Systems & Control Letters vol. 52 257–261 (2004) – 10.1016/j.sysconle.2004.02.003
- Pavlov, A., Wouw, N. & Nijmeijer, H. Convergent Systems: Analysis and Synthesis. Lecture Notes in Control and Information Science 131–146 doi:10.1007/11529798_9 – 10.1007/11529798_9
- Reyes-Báez, R., van der Schaft, A. & Jayawardhana, B. Virtual Differential Passivity based Control for Tracking of Flexible-joints Robots. IFAC-PapersOnLine vol. 51 169–174 (2018) – 10.1016/j.ifacol.2018.06.048
- Sepulchre, (2012)
- van der Schaft, (2000)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. AEÜ International journal of electronics and communications (1995)
- van der Schaft, A. J. On differential passivity. IFAC Proceedings Volumes vol. 46 21–25 (2013) – 10.3182/20130904-3-fr-2041.00008
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493
- Willems, J. C. Dissipative Dynamical Systems. European Journal of Control vol. 13 134–151 (2007) – 10.3166/ejc.13.134-151
- Yaghmaei, A. & Yazdanpanah, M. J. Trajectory tracking for a class of contractive port Hamiltonian systems. Automatica vol. 83 331–336 (2017) – 10.1016/j.automatica.2017.06.039
- Yaghmaei, (2023)