On contraction of time-varying port-Hamiltonian systems
Authors
Nikita Barabanov, Romeo Ortega, Anton Pyrkin
Abstract
In this paper we identify classes of port-Hamiltonian systems which are contracting. Our motivation in this study is two-fold, on one hand, it is well-known that many physical systems are described by port-Hamiltonian models. On the other hand, contraction is a fundamental property that has been efficiently exploited for the design of observers, as well as tracking, adaptive and multi-agent controllers for nonlinear systems. The conditions for contraction are given in terms of feasibility of linear matrix inequalities, hence their verification is computationally efficient.
Keywords
Nonlinear systems; Contraction theory; port-Hamiltonian systems
Citation
- Journal: Systems & Control Letters
- Year: 2019
- Volume: 133
- Issue:
- Pages: 104545
- Publisher: Elsevier BV
- DOI: 10.1016/j.sysconle.2019.104545
BibTeX
@article{Barabanov_2019,
title={{On contraction of time-varying port-Hamiltonian systems}},
volume={133},
ISSN={0167-6911},
DOI={10.1016/j.sysconle.2019.104545},
journal={Systems & Control Letters},
publisher={Elsevier BV},
author={Barabanov, Nikita and Ortega, Romeo and Pyrkin, Anton},
year={2019},
pages={104545}
}
References
- Demidovich, (1961)
- Yoshizawa, (1966)
- Pavlov, A., Pogromsky, A., van de Wouw, N. & Nijmeijer, H. Convergent dynamics, a tribute to Boris Pavlovich Demidovich. Systems & Control Letters vol. 52 257–261 (2004) – 10.1016/j.sysconle.2004.02.003
- LOHMILLER, W. & SLOTINE, J.-J. E. On Contraction Analysis for Non-linear Systems. Automatica vol. 34 683–696 (1998) – 10.1016/s0005-1098(98)00019-3
- Angeli, D. A Lyapunov approach to incremental stability properties. IEEE Transactions on Automatic Control vol. 47 410–421 (2002) – 10.1109/9.989067
- Sontag, Contractive systems with inputs. (2010)
- Aghannan, N. & Rouchon, P. An intrinsic observer for a class of lagrangian systems. IEEE Transactions on Automatic Control vol. 48 936–945 (2003) – 10.1109/tac.2003.812778
- Andrieu, V., Jayawardhana, B. & Praly, L. Transverse Exponential Stability and Applications. IEEE Transactions on Automatic Control vol. 61 3396–3411 (2016) – 10.1109/tac.2016.2528050
- Chung, S.-J. & Slotine, J.-J. E. Cooperative Robot Control and Concurrent Synchronization of Lagrangian Systems. IEEE Transactions on Robotics vol. 25 686–700 (2009) – 10.1109/tro.2009.2014125
- Forni, F. & Sepulchre, R. A Differential Lyapunov Framework for Contraction Analysis. IEEE Transactions on Automatic Control vol. 59 614–628 (2014) – 10.1109/tac.2013.2285771
- Wang, L., Forni, F., Ortega, R., Liu, Z. & Su, H. Immersion and Invariance Stabilization of Nonlinear Systems Via Virtual and Horizontal Contraction. IEEE Transactions on Automatic Control vol. 62 4017–4022 (2017) – 10.1109/tac.2016.2614888
- Yaghmaei, A. & Yazdanpanah, M. J. Trajectory tracking for a class of contractive port Hamiltonian systems. Automatica vol. 83 331–336 (2017) – 10.1016/j.automatica.2017.06.039
- van der Schaft, (2016)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Barabanov, N. E. Kalman–Yakubovich lemma in general finite dimensional case. International Journal of Robust and Nonlinear Control vol. 17 369–386 (2006) – 10.1002/rnc.1162
- Jouffroy, J. & Fossen, T. I. Tutorial on Incremental Stability Analysis using Contraction Theory. Modeling, Identification and Control: A Norwegian Research Bulletin vol. 31 93–106 (2010) – 10.4173/mic.2010.3.2
- Perko, (2000)
- Abou-Kandil, (2003)