Boundary Energy Shaping of Linear Distributed Port-Hamiltonian Systems* *This work was partially supported by the Austrian Center of Competence in Mechatronics (ACCM).
Authors
Abstract
This paper deals with the stabilization via Casimir generation and energy shaping of linear, lossless, distributed port-Hamiltonian systems. Once inputs and outputs of the distributed port-Hamiltonian system have been chosen to obtain a well-defined boundary control systems, conditions for the existence of Casimir functions in closed-loop and of the associated semigroup are given, together with a criterion to be used to check asymptotic stability. Casimir functions suggest how to select the controller Hamiltonian to introduce a minimum at the desired equilibrium, while stability is ensured if proper “pervasive” boundary damping is present. The methodology is illustrated with the help of a Timoshenko beam with full-actuation on one side.
Keywords
distributed port-Hamiltonian systems; energy shaping; Casimir functions
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2012
- Volume: 45
- Issue: 19
- Pages: 120–125
- Publisher: Elsevier BV
- DOI: 10.3182/20120829-3-it-4022.00041
- Note: 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control
BibTeX
@article{Macchelli_2012,
title={{Boundary Energy Shaping of Linear Distributed Port-Hamiltonian Systems* *This work was partially supported by the Austrian Center of Competence in Mechatronics (ACCM).}},
volume={45},
ISSN={1474-6670},
DOI={10.3182/20120829-3-it-4022.00041},
number={19},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Macchelli, Alessandro},
year={2012},
pages={120--125}
}
References
- Cox, S. & Zuazua, E. The rate at which energy decays in a string damped at one end. Indiana Univ. Math. J. 44, 0–0 (1995) – 10.1512/iumj.1995.44.2001
- Curtain, (1995)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Trans. Automat. Contr. 50, 1839–1844 (2005) – 10.1109/tac.2005.858656
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Contr. 45, 1498–1502 (2000) – 10.1109/9.871758
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Energy-shaping of port-controlled Hamiltonian systems by interconnection. Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304) vol. 2 1646–1651 – 10.1109/cdc.1999.830260
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Pasumarthy, R. & van der Schaft, A. J. Achievable Casimirs and its implications on control of port-Hamiltonian systems. International Journal of Control 80, 1421–1438 (2007) – 10.1080/00207170701361273
- Rodriguez, H., van der Schaft, A. J. & Ortega, R. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 1 131–136 – 10.1109/cdc.2001.980086
- van der Schaft, (2000)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Villegas, J. A., Zwart, H., Le Gorrec, Y., Maschke, B. & van der Schaft, A. J. Stability and Stabilization of a Class of Boundary Control Systems. Proceedings of the 44th IEEE Conference on Decision and Control 3850–3855 doi:10.1109/cdc.2005.1582762 – 10.1109/cdc.2005.1582762
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Trans. Automat. Contr. 54, 142–147 (2009) – 10.1109/tac.2008.2007176