Asymptotic stability of an Euler-Bernoulli beam coupled to non-linear spring-damper systems
Authors
Yann Le Gorrec, Hans Zwart, Hector Ramirez
Abstract
The stability of an undamped Euler Bernoulli beam connected to non-linear mass spring damper systems is addressed. It is shown that under mild assumptions on the local behaviour of the non-linear springs and dampers the solutions exist and the system is globally asymptotically stable.
Keywords
Boundary control systems; infinite-dimensional port Hamiltonian systems; asymptotic stability; non-linear control
Citation
- Journal: IFAC-PapersOnLine
- Year: 2017
- Volume: 50
- Issue: 1
- Pages: 5580–5585
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2017.08.1102
- Note: 20th IFAC World Congress
BibTeX
@article{Gorrec_2017,
title={{Asymptotic stability of an Euler-Bernoulli beam coupled to non-linear spring-damper systems}},
volume={50},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2017.08.1102},
number={1},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Gorrec, Yann Le and Zwart, Hans and Ramirez, Hector},
year={2017},
pages={5580--5585}
}
References
- Augner, (2017)
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory vol. 3 207–229 (2014) – 10.3934/eect.2014.3.207
- Boudaoud, M., Haddab, Y. & Le Gorrec, Y. Modeling and Optimal Force Control of a Nonlinear Electrostatic Microgripper. IEEE/ASME Transactions on Mechatronics vol. 18 1130–1139 (2013) – 10.1109/tmech.2012.2197216
- Curtain, (1995)
- Curtain, R. & Zwart, H. Stabilization of collocated systems by nonlinear boundary control. Systems & Control Letters vol. 96 11–14 (2016) – 10.1016/j.sysconle.2016.06.014
- Jacob, (2012)
- Kurula, M. & Zwart, H. Linear wave systems onn-D spatial domains. International Journal of Control 1–24 (2014) doi:10.1080/00207179.2014.993337 – 10.1080/00207179.2014.993337
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Luo, (1999)
- Miletic, M., Sturzer, D., Arnold, A. & Kugi, A. Stability of an Euler-Bernoulli Beam With a Nonlinear Dynamic Feedback System. IEEE Transactions on Automatic Control vol. 61 2782–2795 (2016) – 10.1109/tac.2015.2499604
- Pazy, (1983)
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Ramirez, (2017)
- Timoshenko, (1953)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Villegas, Stability and stabilization of a class of boundary control systems. In Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC ‘05. 44th IEEE Conference on (2005)