An impedance grasping strategy
Authors
Mauricio Munoz-Arias, Jacquelien M.A. Scherpen, Alessandro Macchelli
Abstract
This work is devoted to an impedance grasping strategy for a class of standard mechanical systems in the port-Hamiltonian framework. The presented control strategy requires a set of coordinate transformations, since the impedance control in the port-Hamiltonian framework with structure preservation is not straightforward. The impedance grasping control is achieved via a virtual spring with a variable rest length. The force that is exerted by the virtual spring leads to a dissipation term in the impedance grasping controller which is needed to obtain a smoother noncontact to contact transition. Simulations results are given in order to motivate our results.
Citation
- Journal: 53rd IEEE Conference on Decision and Control
- Year: 2014
- Volume:
- Issue:
- Pages: 1403–1408
- Publisher: IEEE
- DOI: 10.1109/cdc.2014.7039598
BibTeX
@inproceedings{Munoz_Arias_2014,
title={{An impedance grasping strategy}},
DOI={10.1109/cdc.2014.7039598},
booktitle={{53rd IEEE Conference on Decision and Control}},
publisher={IEEE},
author={Munoz-Arias, Mauricio and Scherpen, Jacquelien M.A. and Macchelli, Alessandro},
year={2014},
pages={1403--1408}
}
References
- maschke, port-controlled Hamiltonian systems: modeling origins and system-theoretic properties. Proceedings of IFAC Symposium on Nonlinear Control Systems (1992)
- Munoz-Arias, M., Scherpen, J. M. A. & Dirksz, D. A. Position control via force feedback for a class of standard mechanical systems in the port-Hamiltonian framework. 52nd IEEE Conference on Decision and Control 1622–1627 (2013) doi:10.1109/cdc.2013.6760114 – 10.1109/cdc.2013.6760114
- murray, A Mathematical Introduction to Robotic Manipulation. CRC Press (1994)
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- rijs, Philips Experimental Robot Arm: User Instructor Manual. Koninklijke Philips Electronics N V Eindhoven (2010)
- Sadeghian, H., Keshmiri, M., Villani, L. & Siciliano, B. Null-space impedance control with disturbance observer. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems 2795–2800 (2012) doi:10.1109/iros.2012.6385690 – 10.1109/iros.2012.6385690
- Sakai, S. & Stramigioli, S. Casimir based impedance control. 2012 IEEE International Conference on Robotics and Automation 1384–1391 (2012) doi:10.1109/icra.2012.6224563 – 10.1109/icra.2012.6224563
- Springer Handbook of Robotics. (2008) doi:10.1007/978-3-540-30301-5 – 10.1007/978-3-540-30301-5
- spong, Robot Modeling and Control (2006)
- stramigioli, Modeling and IPC control of interactive mechanical systems a coordinate-free approach Lecture Notes in Control and Information Sciences 266 (2001)
- dirksz, A port-Hamiltonian approach to visual servo control of a pick and place system. Asian Journal of Control (2013)
- Dirksz, D. A. & Scherpen, J. M. A. A port-Hamiltonian approach to visual servo control of a pick and place system. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) 5661–5666 (2012) doi:10.1109/cdc.2012.6426422 – 10.1109/cdc.2012.6426422
- duindam, 2009 Modeling and Control of Complex Physical Systems The Port-Hamiltonian Approach (0)
- Diolaiti, N., Melchiorri, C. & Stramigioli, S. Contact impedance estimation for robotic systems. IEEE Trans. Robot. 21, 925–935 (2005) – 10.1109/tro.2005.852261
- Hogan, N. Impedance Control: An Approach to Manipulation: Part I—Theory. Journal of Dynamic Systems, Measurement, and Control 107, 1–7 (1985) – 10.1115/1.3140702
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Dirksz, D. A. & Scherpen, J. M. A. Power-based control: Canonical coordinate transformations, integral and adaptive control. Automatica 48, 1045–1056 (2012) – 10.1016/j.automatica.2012.03.003
- Theory of Robot Control. Communications and Control Engineering (Springer London, 1996). doi:10.1007/978-1-4471-1501-4 – 10.1007/978-1-4471-1501-4
- Hutchinson, S., Hager, G. D. & Corke, P. I. A tutorial on visual servo control. IEEE Trans. Robot. Automat. 12, 651–670 (1996) – 10.1109/70.538972
- Mahony, R. & Stramigioli, S. A port-Hamiltonian approach to image-based visual servo control for dynamic systems. The International Journal of Robotics Research 31, 1303–1319 (2012) – 10.1177/0278364912455074
- Viola, G., Ortega, R., Banavar, R., Acosta, J. A. & Astolfi, A. Total Energy Shaping Control of Mechanical Systems: Simplifying the Matching Equations Via Coordinate Changes. IEEE Trans. Automat. Contr. 52, 1093–1099 (2007) – 10.1109/tac.2007.899064
- van der schaft, Li-Gain and Passivity Techniques in Nonlinear Control Lecture Notes in Control and Information Sciences 218 (1999)