An Energy-Based Control Strategy for Battery Energy Storage Systems: A Case Study on Microgrid Applications
Authors
Rui Hou, Thai-Thanh Nguyen, Hak-Man Kim, Huihui Song, Yanbin Qu
Abstract
Battery energy storage systems (BESSs) with proportional-integral (PI) control methods have been widely studied in microgrids (MGs). However, the performance of PI control methods might be unsatisfactory for BESSs due to the nonlinear characteristics of the system. To overcome this problem, an energy-based (EB) control method is applied to control the converter of a BESS in this study. The EB method is a robust nonlinear control method based on passivity theory with good performance in both transient and steady states. The detailed design process of the EB method in the BESS by adopting an interconnection and damping assignment (IDA) strategy is described. The design process comprises three steps: the construction of the port-controlled Hamiltonian model, the determination of the equilibrium point and the solution of the undetermined matrix. In addition, integral action is combined to eliminate the steady state error generated by the model mismatch. To establish the correctness and validity of the proposed method, we implement several case simulation studies based on a test MG system and compare the control performance of the EB and PI methods carefully. The case simulation results demonstrate that the EB method has better tracking and anti-disturbance performance compared with the classic PI method. Moreover, the proposed EB method shows stronger robustness to the uncertainty of system parameters.
Citation
- Journal: Energies
- Year: 2017
- Volume: 10
- Issue: 2
- Pages: 215
- Publisher: MDPI AG
- DOI: 10.3390/en10020215
BibTeX
@article{Hou_2017,
title={{An Energy-Based Control Strategy for Battery Energy Storage Systems: A Case Study on Microgrid Applications}},
volume={10},
ISSN={1996-1073},
DOI={10.3390/en10020215},
number={2},
journal={Energies},
publisher={MDPI AG},
author={Hou, Rui and Nguyen, Thai-Thanh and Kim, Hak-Man and Song, Huihui and Qu, Yanbin},
year={2017},
pages={215}
}
References
- Guo, Energy management system for stand-alone wind-powered-desalination microgrid. IEEE Trans. Smart Grid (2016)
- Application and modeling of battery energy storage in power systems. CSEE JPES 2, 82–90 (2016) – 10.17775/cseejpes.2016.00039
- Lan, Y., Guan, X. & Wu, J. Rollout strategies for real‐time multi‐energy scheduling in microgrid with storage system. IET Generation Trans & Dist 10, 688–696 (2016) – 10.1049/iet-gtd.2015.0426
- Tang, X., Hu, X., Li, N., Deng, W. & Zhang, G. A Novel Frequency and Voltage Control Method for Islanded Microgrid Based on Multienergy Storages. IEEE Trans. Smart Grid 7, 410–419 (2016) – 10.1109/tsg.2014.2381235
- Guo, W., Xiao, L. & Dai, S. Fault current limiter‐battery energy storage system for the doubly‐fed induction generator: analysis and experimental verification. IET Generation Trans & Dist 10, 653–660 (2016) – 10.1049/iet-gtd.2014.1158
- Arunprasanth, S., Annakkage, U. D., Karawita, C. & Kuffel, R. Generalized Frequency-Domain Controller Tuning Procedure for VSC Systems. IEEE Trans. Power Delivery 31, 732–742 (2016) – 10.1109/tpwrd.2015.2494872
- Seidi Khorramabadi, S. & Bakhshai, A. Critic-Based Self-Tuning PI Structure for Active and Reactive Power Control of VSCs in Microgrid Systems. IEEE Trans. Smart Grid 6, 92–103 (2015) – 10.1109/tsg.2014.2354651
- Freijedo, F. D. et al. Tuning of Synchronous-Frame PI Current Controllers in Grid-Connected Converters Operating at a Low Sampling Rate by MIMO Root Locus. IEEE Trans. Ind. Electron. 62, 5006–5017 (2015) – 10.1109/tie.2015.2402114
- Parvez Akter, Md., Mekhilef, S., Mei Lin Tan, N. & Akagi, H. Modified Model Predictive Control of a Bidirectional AC–DC Converter Based on Lyapunov Function for Energy Storage Systems. IEEE Trans. Ind. Electron. 63, 704–715 (2016) – 10.1109/tie.2015.2478752
- Lee, T.-S. Lagrangian Modeling and Passivity-Based Control of Three-Phase AC/DC Voltage-Source Converters. IEEE Trans. Ind. Electron. 51, 892–902 (2004) – 10.1109/tie.2004.831753
- Song, E., Lynch, A. F. & Dinavahi, V. Experimental Validation of Nonlinear Control for a Voltage Source Converter. IEEE Trans. Contr. Syst. Technol. 17, 1135–1144 (2009) – 10.1109/tcst.2008.2001741
- Yi, H., Zhuo, F., Wang, F. & Wang, Z. A Digital Hysteresis Current Controller for Three-Level Neural-Point-Clamped Inverter With Mixed-Levels and Prediction-Based Sampling. IEEE Trans. Power Electron. 31, 3945–3957 (2016) – 10.1109/tpel.2015.2466599
- Flores‐Bahamonde, F., Valderrama‐Blavi, H., Bosque‐Moncusi, J. M., García, G. & Martínez‐Salamero, L. Using the sliding‐mode control approach for analysis and design of the boost inverter. IET Power Electronics 9, 1625–1634 (2016) – 10.1049/iet-pel.2015.0608
- Tanasa, V., Monaco, S. & Normand-Cyrot, D. Backstepping Control Under Multi-Rate Sampling. IEEE Trans. Automat. Contr. 61, 1208–1222 (2016) – 10.1109/tac.2015.2453891
- E. S., S., E. K., P., Chatterjee, K. & Bandyopadhyay, S. An Active Harmonic Filter Based on One-Cycle Control. IEEE Trans. Ind. Electron. 61, 3799–3809 (2014) – 10.1109/tie.2013.2286558
- Tao, C.-W., Wang, C.-M. & Chang, C.-W. A Design of a DC–AC Inverter Using a Modified ZVS-PWM Auxiliary Commutation Pole and a DSP-Based PID-Like Fuzzy Control. IEEE Trans. Ind. Electron. 63, 397–405 (2016) – 10.1109/tie.2015.2477061
- Nageshrao, S. P., Lopes, G. A. D., Jeltsema, D. & Babuska, R. Port-Hamiltonian Systems in Adaptive and Learning Control: A Survey. IEEE Trans. Automat. Contr. 61, 1223–1238 (2016) – 10.1109/tac.2015.2458491
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Trans. Automat. Contr. 58, 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Dirksz, D. A. & Scherpen, J. M. A. Structure Preserving Adaptive Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 57, 2880–2885 (2012) – 10.1109/tac.2012.2192359
- Nunna, K., Sassano, M. & Astolfi, A. Constructive Interconnection and Damping Assignment for Port-Controlled Hamiltonian Systems. IEEE Trans. Automat. Contr. 60, 2350–2361 (2015) – 10.1109/tac.2015.2400663
- Kwasinski, A. & Krein, P. T. Passivity-Based Control of Buck Converters with Constant-Power Loads. 2007 IEEE Power Electronics Specialists Conference 259–265 (2007) doi:10.1109/pesc.2007.4341998 – 10.1109/pesc.2007.4341998
- Zeng, J., Zhang, Z. & Qiao, W. An Interconnection and Damping Assignment Passivity-Based Controller for a DC–DC Boost Converter With a Constant Power Load. IEEE Trans. on Ind. Applicat. 50, 2314–2322 (2014) – 10.1109/tia.2013.2290872
- Yu, H., Teng, Z., Yu, J. & Zang, Y. Energy-shaping and passivity-based control of three-phase PWM rectifiers. Proceedings of the 10th World Congress on Intelligent Control and Automation 2844–2848 (2012) doi:10.1109/wcica.2012.6358355 – 10.1109/wcica.2012.6358355
- Serra, F. M., De Angelo, C. H. & Forchetti, D. G. IDA-PBC control of a three-phase front-end converter. IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society 5203–5208 (2012) doi:10.1109/iecon.2012.6388969 – 10.1109/iecon.2012.6388969
- Tremblay, O., Dessaint, L.-A. & Dekkiche, A.-I. A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles. 2007 IEEE Vehicle Power and Propulsion Conference 284–289 (2007) doi:10.1109/vppc.2007.4544139 – 10.1109/vppc.2007.4544139
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica 45, 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- Yazdani, A. & Iravani, R. Voltage‐Sourced Converters in Power Systems. (2010) doi:10.1002/9780470551578 – 10.1002/9780470551578
- Hamby, D. M. A review of techniques for parameter sensitivity analysis of environmental models. Environ Monit Assess 32, 135–154 (1994) – 10.1007/bf00547132