An energy-based analysis of reduced-order models of (networked) synchronous machines
Authors
T. W. Stegink, C. De Persis, A. J. Van Der Schaft
Abstract
Stability of power networks is an increasingly important topic because of the high penetration of renewable distributed generation units. This requires the development of advanced techniques for the analysis and controller design of power networks. Although there are widely accepted reduced-order models to describe the power network dynamics, they are commonly presented without details about the reduction procedure. The present article aims to provide a modular model derivation of multi-machine power networks. Starting from first-principle fundamental physics, we present detailed dynamical models of synchronous machines and clearly state the underlying assumptions which lead to some of the standard reduced-order multi-machine models. In addition, the energy functions for these models are derived, which allows to represent the multi-machine systems as port-Hamiltonian systems. Moreover, the systems are proven to be shifted passive, which permits for a power-preserving interconnection with other passive components. Graphical
Citation
- Journal: Mathematical and Computer Modelling of Dynamical Systems
- Year: 2019
- Volume: 25
- Issue: 1
- Pages: 1–39
- Publisher: Informa UK Limited
- DOI: 10.1080/13873954.2019.1566265
BibTeX
@article{Stegink_2019,
title={{An energy-based analysis of reduced-order models of (networked) synchronous machines}},
volume={25},
ISSN={1744-5051},
DOI={10.1080/13873954.2019.1566265},
number={1},
journal={Mathematical and Computer Modelling of Dynamical Systems},
publisher={Informa UK Limited},
author={Stegink, T. W. and De Persis, C. and Van Der Schaft, A. J.},
year={2019},
pages={1--39}
}
References
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Fiaz S., J. Control (2013)
- Stegink T.W., IEEE Conference on Decision and Control, Osaka, Japan (2015)
- Stegink, T. W., Persis, C. D. & van der Schaft, A. J. Port-Hamiltonian Formulation of the Gradient Method Applied to Smart Grids. IFAC-PapersOnLine vol. 48 13–18 (2015) – 10.1016/j.ifacol.2015.10.207
- Stegink, T., De Persis, C. & van der Schaft, A. A Unifying Energy-Based Approach to Stability of Power Grids With Market Dynamics. IEEE Transactions on Automatic Control vol. 62 2612–2622 (2017) – 10.1109/tac.2016.2613901
- Anderson P.M., Power System Control and Stability (1977)
- Machowski J., Power System Dynamics: Stability and Control (2008)
- Kundur P., Power System Stability and Control (1993)
- Caliskan, S. Y. & Tabuada, P. Compositional Transient Stability Analysis of Multimachine Power Networks. IEEE Transactions on Control of Network Systems vol. 1 4–14 (2014) – 10.1109/tcns.2014.2304868
- Transient stabilization of multimachine power systems with nontrivial transfer conductances. IEEE Transactions on Automatic Control vol. 50 60–75 (2005) – 10.1109/tac.2004.840477
- Li N., American Control Conference (2014)
- Seungil Y., Proceeding of IEEE Conference on Decision and Control (2014)
- Zhang, X. & Papachristodoulou, A. A real-time control framework for smart power networks: Design methodology and stability. Automatica vol. 58 43–50 (2015) – 10.1016/j.automatica.2015.05.003
- Zhao C., 49th Annual Conference on Information Sciences and Systems (CISS) (2015)
- Pai, M. A. Energy Function Analysis for Power System Stability. (Springer US, 1989). doi:10.1007/978-1-4613-1635-0 – 10.1007/978-1-4613-1635-0
- Fouad, A. & Stanton, S. Transient Stability of a Multi-Machine Power System Part I: Investigation of System Trajectories. IEEE Transactions on Power Apparatus and Systems vol. PAS-100 3408–3416 (1981) – 10.1109/tpas.1981.316683
- Michel, A., Fouad, A. & Vittal, V. Power system transient stability using individual machine energy functions. IEEE Transactions on Circuits and Systems vol. 30 266–276 (1983) – 10.1109/tcs.1983.1085360
- Trip, S., Bürger, M. & De Persis, C. An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages. Automatica vol. 64 240–253 (2016) – 10.1016/j.automatica.2015.11.021
- De Persis, C. & Monshizadeh, N. Bregman Storage Functions for Microgrid Control. IEEE Transactions on Automatic Control vol. 63 53–68 (2018) – 10.1109/tac.2017.2709246
- De Persis C., IEEE Conference on Decision and Control, Las Vegas, NV, USA (2016)
- Caliskan S.Y., IEEE Conference on Decision and Control, Osaka, Japan (2015)
- Stegink T.W., IEEE Conference on Decision and Control (2016)
- Schiffer, J. et al. A survey on modeling of microgrids—From fundamental physics to phasors and voltage sources. Automatica vol. 74 135–150 (2016) – 10.1016/j.automatica.2016.07.036
- van der Schaft, A. & Stegink, T. Perspectives in modeling for control of power networks. Annual Reviews in Control vol. 41 119–132 (2016) – 10.1016/j.arcontrol.2016.04.017
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- Sauer P.W., Power System Dynamics and Stability (1998)
- Ahmed-Zaid, S., Sauer, P., Pai, M. & Sarioglu, M. Reduced order modeling of synchronous machines using singular perturbation. IEEE Transactions on Circuits and Systems vol. 29 782–786 (1982) – 10.1109/tcs.1982.1085101
- Kokotovic, P. V., Allemong, J. J., Winkelman, J. R. & Chow, J. H. Singular perturbation and iterative separation of time scales. Automatica vol. 16 23–33 (1980) – 10.1016/0005-1098(80)90083-7
- Park, R. H. Two-reaction theory of synchronous machines generalized method of analysis-part I. Transactions of the American Institute of Electrical Engineers vol. 48 716–727 (1929) – 10.1109/t-aiee.1929.5055275
- Alvarado, F. L., Meng, J., DeMarco, C. L. & Mota, W. S. Stability analysis of interconnected power systems coupled with market dynamics. IEEE Transactions on Power Systems vol. 16 695–701 (2001) – 10.1109/59.962415
- Bergen, A. R. & Hill, D. J. A Structure Preserving Model for Power System Stability Analysis. IEEE Transactions on Power Apparatus and Systems vol. PAS-100 25–35 (1981) – 10.1109/tpas.1981.316883
- Zhang X., American Control Conference (2013)
- Bürger M., Proceedings of the MTNS (2014)
- Simpson-Porco, J. W., Dörfler, F. & Bullo, F. Synchronization and power sharing for droop-controlled inverters in islanded microgrids. Automatica vol. 49 2603–2611 (2013) – 10.1016/j.automatica.2013.05.018
- Zhang, X., Li, N. & Papachristodoulou, A. Achieving real-time economic dispatch in power networks via a saddle point design approach. 2015 IEEE Power & Energy Society General Meeting 1–5 (2015) doi:10.1109/pesgm.2015.7286222 – 10.1109/pesgm.2015.7286222
- Bretas, N. G. & Alberto, L. F. C. Lyapunov function for power systems with transfer conductances: extension of the invariance principle. IEEE Transactions on Power Systems vol. 18 769–777 (2003) – 10.1109/tpwrs.2003.811207
- Trip S., Distributed Optimal Load Frequency Control with Non-Passive Dynamics (2017)