Transient stabilization of multimachine power systems with nontrivial transfer conductances
Authors
Abstract
We provide a solution to the long-standing problem of transient stabilization of multimachine power systems with nonnegligible transfer conductances. More specifically, we consider the full 3n-dimensional model of the n-generator system with lossy transmission lines and loads and prove the existence of a nonlinear static state feedback law for the generator excitation field that ensures asymptotic stability of the operating point with a well-defined estimate of the domain of attraction provided by a bona fide Lyapunov function. To design the control law we apply the recently introduced interconnection and damping assignment passivity-based control methodology that endows the closed-loop system with a port-controlled Hamiltonian structure with desired total energy function. The latter consists of terms akin to kinetic and potential energies, thus has a clear physical interpretation. Our derivations underscore the deleterious effects of resistive elements which, as is well known, hamper the assignment of simple “gradient” energy functions and compel us to include nonstandard cross terms. A key step in the construction is the modification of the energy transfer between the electrical and the mechanical parts of the system which is obtained via the introduction of state-modulated interconnections that play the role of multipliers in classical passivity theory.
Citation
- Journal: IEEE Transactions on Automatic Control
- Year: 2005
- Volume: 50
- Issue: 1
- Pages: 60–75
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tac.2004.840477
BibTeX
@article{2005, volume={50},
ISSN={1558-2523},
DOI={10.1109/tac.2004.840477},
number={1},
journal={IEEE Transactions on Automatic Control},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
year={2005},
pages={60--75}
}
References
- Abraham, R., Marsden, J. E. & Ratiu, T. Manifolds, Tensor Analysis, and Applications. Applied Mathematical Sciences (Springer New York, 1988). doi:10.1007/978-1-4612-1029-0 – 10.1007/978-1-4612-1029-0
- Anderson, Power Systems Control and Stability (1977)
- Bazanella, A. S., Kokotovic, P. V. & e Silva, A. S. A dynamic extension for L/sub g/V controllers. IEEE Trans. Automat. Contr. 44, 588–592 (1999) – 10.1109/9.751357
- Hsiao-Dong Chang, Chia-Chi Chu & Cauley, G. Direct stability analysis of electric power systems using energy functions: theory, applications, and perspective. Proc. IEEE 83, 1497–1529 (1995) – 10.1109/5.481632
- Dahl, Electric Power Circuits: Theory and Applications (1938)
- Desoer, C. A., Vidyasagar, M. & Willson, A. N., Jr. Feedback Systems: Input-Output Properties. Journal of Dynamic Systems, Measurement, and Control 97, 453–454 (1975) – 10.1115/1.3426967
- Ghandhari, M., Andersson, G., Pavella, M. & Ernst, D. A control strategy for controllable series capacitor in electric power systems. Automatica 37, 1575–1583 (2001) – 10.1016/s0005-1098(01)00099-1
- King, C. A., Chapman, J. W. & Ilic, M. D. Feedback linearizing excitation control on a full-scale power system model. IEEE Trans. Power Syst. 9, 1102–1109 (1994) – 10.1109/59.317620
- Kundur, Power System Stability and Control (1994)
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Galaz, M., Ortega, R., Bazanella, A. S. & Stankovic, A. M. An energy-shaping approach to the design of excitation control of synchronous generators. Automatica 39, 111–119 (2003) – 10.1016/s0005-1098(02)00177-2
- Lu, Q. & Sun, Y. Z. Nonlinear stabilizing control of multimachine systems. IEEE Trans. Power Syst. 4, 236–241 (1989) – 10.1109/59.32483
- Lu, Q., Sun, Y. & Mei, S. Nonlinear Excitation Control of Large Synchronous Generators. Nonlinear Control Systems and Power System Dynamics 199–244 (2001) doi:10.1007/978-1-4757-3312-9_6 – 10.1007/978-1-4757-3312-9_6
- Machowski, Power System Dynamics and Stability (1997)
- Magnusson, P. C. The Transient-Energy Method of Calculating Stability. Trans. Am. Inst. Electr. Eng. 66, 747–755 (1947) – 10.1109/t-aiee.1947.5059502
- Mielczarski, W. & Zajaczkowski, A. M. Nonlinear field voltage control of a synchronous generator using feedback linearization. Automatica 30, 1625–1630 (1994) – 10.1016/0005-1098(94)90102-3
- Moon, Y.-H., Choi, B.-K. & Roh, T.-H. Estimating the domain of attraction for power systems via a group of damping-reflected energy functions. Automatica 36, 419–425 (2000) – 10.1016/s0005-1098(99)00162-4
- Narasimhamurthi, N. On the existence of energy function for power systems with transmission losses. IEEE Trans. Circuits Syst. 31, 199–203 (1984) – 10.1109/tcs.1984.1085484
- Ortega, Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (1998)
- Ortega, R., Stanković, A. & Stefanov, P. A Passivation Approach to Power Systems Stabilization. IFAC Proceedings Volumes 31, 309–313 (1998) – 10.1016/s1474-6670(17)40353-3
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Trans. Automat. Contr. 47, 1218–1233 (2002) – 10.1109/tac.2002.800770
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R. Some Applications and Extensions of Interconnection and Damping Assignment Passivity – Based Control. IFAC Proceedings Volumes 36, 41–50 (2003) – 10.1016/s1474-6670(17)38865-1
- Pai, M. A. Energy Function Analysis for Power System Stability. (Springer US, 1989). doi:10.1007/978-1-4613-1635-0 – 10.1007/978-1-4613-1635-0
- Rodríguez, H. & Ortega, R. Stabilization of electromechanical systems via interconnection and damping assignment. Intl J Robust & Nonlinear 13, 1095–1111 (2003) – 10.1002/rnc.804
- Skar, S. J. Stability of Multi-Machine Power Systems with Nontrivial Transfer Conductances. SIAM J. Appl. Math. 39, 475–491 (1980) – 10.1137/0139040
- Shen, T., Ortega, R., Lu, Q., Mei, S. & Tamura, K. Adaptive L2 Disturbance Attenuation Of Hamiltonian Systems With Parametric Perturbation And Application To Power Systems. Asian Journal of Control 5, 143–152 (2003) – 10.1111/j.1934-6093.2003.tb00105.x
- Kirschen, D. S., Bacher, R. & Heydt, G. T. Scanning the issue - Special issue on the technology of power system competition. Proc. IEEE 88, 123–127 (2000) – 10.1109/jproc.2000.823993
- Sun, Y. Z., Song, Y. H. & Li, X. Novel energy-based Lyapunov function for controlled power systems. IEEE Power Eng. Rev. 20, 55–57 (2000) – 10.1109/39.841351
- Yuanzhang Sun, Tielong Shen, Romeo Ortega & Qianjin Liu. Decentralized controller design for multimachine power systems based on the Hamiltonian structure. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) 3045–3050 doi:10.1109/cdc.2001.980283 – 10.1109/cdc.2001.980283
- Tsolas, N., Arapostathis, A. & Varaiya, P. A structure preserving energy function for power system transient stability analysis. IEEE Trans. Circuits Syst. 32, 1041–1049 (1985) – 10.1109/tcs.1985.1085625
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Wang, Y., Hill, D. J., Middleton, R. H. & Gao, L. Transient stability enhancement and voltage regulation of power systems. IEEE Trans. Power Syst. 8, 620–627 (1993) – 10.1109/59.260819
- Yuzhen Wang, Daizhan Cheng, Chunwen Li & You Ge. Dissipative hamiltonian realization and energy-based L/sub 2/-disturbance attenuation control of multimachine power systems. IEEE Trans. Automat. Contr. 48, 1428–1433 (2003) – 10.1109/tac.2003.815037