Adaptive Disturbance Attenuation Control of Two Tank Liquid Level System With Uncertain Parameters Based on Port-Controlled Hamiltonian
Authors
Tao Xu, Haisheng Yu, Jinpeng Yu, Xiangxiang Meng
Abstract
This paper investigates the problem of the level control for two tank liquid level system(TTLLS) with parametric uncertainties and lumped disturbances. It is achieved by a novel adaptive disturbance attenuation control method based on the Port-Controlled Hamiltonian (PCH) model. Firstly, the model of TTLLS is established according to the mass balance principle and the PCH model is achieved. Based on the PCH model, the PCH controller of TTLLS is designed and the stability of the closed-loop system is ensured. To reduce the impact of disturbances and unmeasurable parameters, adaptive \( L_{2} \) disturbance attenuation technology is integrated. To achieve the robustness and simplify the calculation, the parameter estimation vector is designed by splitting complex mathematical expressions. Utilizing the properties of the PCH method and merits of the adaptive disturbance attenuation technology, the integrated controller achieves good performance. Moreover, simulation and experimental results are given to show the effectiveness and strong robustness of the proposed control algorithm.
Citation
- Journal: IEEE Access
- Year: 2020
- Volume: 8
- Issue:
- Pages: 47384–47392
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/access.2020.2979352
BibTeX
@article{Xu_2020,
title={{Adaptive Disturbance Attenuation Control of Two Tank Liquid Level System With Uncertain Parameters Based on Port-Controlled Hamiltonian}},
volume={8},
ISSN={2169-3536},
DOI={10.1109/access.2020.2979352},
journal={IEEE Access},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Xu, Tao and Yu, Haisheng and Yu, Jinpeng and Meng, Xiangxiang},
year={2020},
pages={47384--47392}
}
References
- yu, Hamiltonian modeling and nonlinear control of four-tank water level system. ICIC Exp Lett (2015)
- Yu, H., Yu, J., Wu, H. & Li, H. Energy-shaping and integral control of the three-tank liquid level system. Nonlinear Dyn 73, 2149–2156 (2013) – 10.1007/s11071-013-0930-8
- Lv, C. et al. A hybrid coordination controller for speed and heading control of underactuated unmanned surface vehicles system. Ocean Engineering 176, 222–230 (2019) – 10.1016/j.oceaneng.2019.02.007
- Chi, J., Yu, H. & Yu, J. Hybrid Tracking Control of 2-DOF SCARA Robot via Port-Controlled Hamiltonian and Backstepping. IEEE Access 6, 17354–17360 (2018) – 10.1109/access.2018.2820681
- Yaghmaei, A. & Yazdanpanah, M. J. Structure Preserving Observer Design for Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 64, 1214–1220 (2019) – 10.1109/tac.2018.2847904
- Nageshrao, S. P., Lopes, G. A. D., Jeltsema, D. & Babuska, R. Port-Hamiltonian Systems in Adaptive and Learning Control: A Survey. IEEE Trans. Automat. Contr. 61, 1223–1238 (2016) – 10.1109/tac.2015.2458491
- Sbarbaro, D. & Ortega, R. Averaging level control: An approach based on mass balance. Journal of Process Control 17, 621–629 (2007) – 10.1016/j.jprocont.2007.01.005
- Dörfler, F., Johnsen, J. K. & Allgöwer, F. An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control 19, 1413–1426 (2009) – 10.1016/j.jprocont.2009.07.015
- Ramírez, H., Sbarbaro, D. & Ortega, R. On the control of non-linear processes: An IDA–PBC approach. Journal of Process Control 19, 405–414 (2009) – 10.1016/j.jprocont.2008.06.018
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Yu, J., Shi, P. & Zhao, L. Finite-time command filtered backstepping control for a class of nonlinear systems. Automatica 92, 173–180 (2018) – 10.1016/j.automatica.2018.03.033
- Nguyen, T. S., Hoang, N. H., Hussain, M. A. & Tan, C. K. Tracking-error control via the relaxing port-Hamiltonian formulation: Application to level control and batch polymerization reactor. Journal of Process Control 80, 152–166 (2019) – 10.1016/j.jprocont.2019.05.014
- Deng, W., Yao, J. & Ma, D. Time‐varying input delay compensation for nonlinear systems with additive disturbance: An output feedback approach. Intl J Robust & Nonlinear 28, 31–52 (2017) – 10.1002/rnc.3853
- Yao, J., Deng, W. & Jiao, Z. RISE-Based Adaptive Control of Hydraulic Systems With Asymptotic Tracking. IEEE Trans. Automat. Sci. Eng. 14, 1524–1531 (2017) – 10.1109/tase.2015.2434393
- Yao, J. & Deng, W. Active disturbance rejection adaptive control of uncertain nonlinear systems: theory and application. Nonlinear Dyn 89, 1611–1624 (2017) – 10.1007/s11071-017-3538-6
- Dussud, M., Galichet, S. & Foulloy, L. P. Application of fuzzy logic control for continuous casting mold level control. IEEE Trans. Contr. Syst. Technol. 6, 246–256 (1998) – 10.1109/87.664191
- Kothare, M. V., Mettler, B., Morari, M., Bendotti, P. & Falinower, C.-M. Level control in the steam generator of a nuclear power plant. IEEE Trans. Contr. Syst. Technol. 8, 55–69 (2000) – 10.1109/87.817692
- Shah, D. H. & Patel, D. M. Design of sliding mode control for quadruple-tank MIMO process with time delay compensation. Journal of Process Control 76, 46–61 (2019) – 10.1016/j.jprocont.2019.01.006
- Liu, X., Yu, H., Yu, J. & Zhao, L. Combined Speed and Current Terminal Sliding Mode Control With Nonlinear Disturbance Observer for PMSM Drive. IEEE Access 6, 29594–29601 (2018) – 10.1109/access.2018.2840521
- Liu, H. & Yu, H. Decentralized state estimation for a large-scale spatially interconnected system. ISA Transactions 74, 67–76 (2018) – 10.1016/j.isatra.2018.01.007
- Sutha, S., Lakshmi, P. & Sankaranarayanan, S. Fractional-Order Sliding Mode Controller Design for a Modified Quadruple Tank Process via Multi-Level Switching. Computers & Electrical Engineering 45, 10–21 (2015) – 10.1016/j.compeleceng.2015.04.012
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Trans. Automat. Contr. 59, 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Cartes, D. & Wu, L. Experimental evaluation of adaptive three-tank level control. ISA Transactions 44, 283–293 (2005) – 10.1016/s0019-0578(07)60181-5
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica 43, 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Zhang, M., Borja, P., Ortega, R., Liu, Z. & Su, H. PID Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 63, 1032–1044 (2018) – 10.1109/tac.2017.2732283
- Başçi, A. & Derdiyok, A. Implementation of an adaptive fuzzy compensator for coupled tank liquid level control system. Measurement 91, 12–18 (2016) – 10.1016/j.measurement.2016.05.026
- Nunna, K., Sassano, M. & Astolfi, A. Constructive Interconnection and Damping Assignment for Port-Controlled Hamiltonian Systems. IEEE Trans. Automat. Contr. 60, 2350–2361 (2015) – 10.1109/tac.2015.2400663
- Na, J., Ren, X., Shang, C. & Guo, Y. Adaptive neural network predictive control for nonlinear pure feedback systems with input delay. Journal of Process Control 22, 194–206 (2012) – 10.1016/j.jprocont.2011.09.003
- Deng, W., Yao, J. & Ma, D. Robust adaptive precision motion control of hydraulic actuators with valve dead-zone compensation. ISA Transactions 70, 269–278 (2017) – 10.1016/j.isatra.2017.07.022
- Deng, W. & Yao, J. Extended-State-Observer-Based Adaptive Control of Electrohydraulic Servomechanisms Without Velocity Measurement. IEEE/ASME Trans. Mechatron. 25, 1151–1161 (2020) – 10.1109/tmech.2019.2959297
- Zhang, R., Wu, S. & Gao, F. Improved PI controller based on predictive functional control for liquid level regulation in a coke fractionation tower. Journal of Process Control 24, 125–132 (2014) – 10.1016/j.jprocont.2014.01.004
- Wei, L., Fang, F. & Shi, Y. Adaptive Backstepping-Based Composite Nonlinear Feedback Water Level Control for the Nuclear U-Tube Steam Generator. IEEE Trans. Contr. Syst. Technol. 22, 369–377 (2014) – 10.1109/tcst.2013.2250504
- ang, PID control system analysis, design and technology. IEEE Trans Control Syst Technol (2005)
- Kar, B. & Roy, P. A Comparative Study Between Cascaded FOPI–FOPD and IOPI–IOPD Controllers Applied to a Level Control Problem in a Coupled Tank System. J Control Autom Electr Syst 29, 340–349 (2018) – 10.1007/s40313-018-0373-z
- Yuzhen Wang, Daizhan Cheng, Chunwen Li & You Ge. Dissipative hamiltonian realization and energy-based L/sub 2/-disturbance attenuation control of multimachine power systems. IEEE Trans. Automat. Contr. 48, 1428–1433 (2003) – 10.1109/tac.2003.815037
- van der schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. AEÜ Int J Electronics Comm (1995)
- maschke, Port-controlled Hamiltonian systems: Modelling origins and system theoretic properties. Proc IFAC Symp Nonlinear Control Systems Design (1992)
- Fu, B., Wang, Q. & He, W. Nonlinear Disturbance Observer-Based Control for a Class of Port-Controlled Hamiltonian Disturbed Systems. IEEE Access 6, 50299–50305 (2018) – 10.1109/access.2018.2868919
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control 21, 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Contr. 45, 1498–1502 (2000) – 10.1109/9.871758
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 53, 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Shen, T., Mei, S., Lu, Q., Hu, W. & Tamura, K. Adaptive nonlinear excitation control with L2 disturbance attenuation for power systems. Automatica 39, 81–89 (2003) – 10.1016/s0005-1098(02)00175-9
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450