A Simple Robust Controller for Port–Hamiltonian Systems
Authors
Lassi Paunonen, Yann Le Gorrec, Héctor Ramírez
Abstract
We consider robust output regulation of passive infinite-dimensional linear port-Hamiltonian systems. As the main result, we present a Lyapunov-based proof to show that a passive internal model based low-gain controller solves the control problem for stable port-Hamiltonian systems. The theoretic results are used to construct a controller controller for robust output tracking of a piezoelectric tube model.
Keywords
Port-Hamiltonian system; robust output regulation; controller design
Citation
- Journal: IFAC-PapersOnLine
- Year: 2018
- Volume: 51
- Issue: 3
- Pages: 92–96
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2018.06.024
- Note: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018
BibTeX
@article{Paunonen_2018,
title={{A Simple Robust Controller for Port–Hamiltonian Systems}},
volume={51},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2018.06.024},
number={3},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Paunonen, Lassi and Gorrec, Yann Le and Ramírez, Héctor},
year={2018},
pages={92--96}
}
References
- Boulite, S., Idrissi, A. & Ould Maaloum, A. Robust multivariable PI-controllers for linear systems in Banach state spaces. Journal of Mathematical Analysis and Applications vol. 349 90–99 (2009) – 10.1016/j.jmaa.2008.08.039
- Hamalainen, T. & Pohjolainen, S. A finite-dimensional robust controller for systems in the CD-algebra. IEEE Transactions on Automatic Control vol. 45 421–431 (2000) – 10.1109/9.847722
- Hämäläinen, T. & Pohjolainen, S. Robust Regulation of Distributed Parameter Systems with Infinite-Dimensional Exosystems. SIAM Journal on Control and Optimization vol. 48 4846–4873 (2010) – 10.1137/090757976
- Hamalainen, T. & Pohjolainen, S. A Self-Tuning Robust Regulator for Infinite-Dimensional Systems. IEEE Transactions on Automatic Control vol. 56 2116–2127 (2011) – 10.1109/tac.2011.2129310
- Humaloja, J.-P. & Paunonen, L. Robust Regulation of Infinite-Dimensional Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 63 1480–1486 (2018) – 10.1109/tac.2017.2748055
- Jacob, (2012)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Logemann, H. & Townley, S. Low-Gain Control of Uncertain Regular Linear Systems. SIAM Journal on Control and Optimization vol. 35 78–116 (1997) – 10.1137/s0363012994275920
- Logemann, H. & Zwart, H. On Robust PI-Control of Infinite-Dimensional Systems. SIAM Journal on Control and Optimization vol. 30 573–593 (1992) – 10.1137/0330033
- Paunonen, L. Controller Design for Robust Output Regulation of Regular Linear Systems. IEEE Transactions on Automatic Control vol. 61 2974–2986 (2016) – 10.1109/tac.2015.2509439
- Paunonen, L. & Pohjolainen, S. Internal Model Theory for Distributed Parameter Systems. SIAM Journal on Control and Optimization vol. 48 4753–4775 (2010) – 10.1137/090760957
- Pohjolainen, S. Robust multivariable PI-controller for infinite dimensional systems. IEEE Transactions on Automatic Control vol. 27 17–30 (1982) – 10.1109/tac.1982.1102887
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Rebarber, R. & Weiss, G. Internal model based tracking and disturbance rejection for stable well-posed systems. Automatica vol. 39 1555–1569 (2003) – 10.1016/s0005-1098(03)00192-4
- Phóng, V. Q. The operator equationAX−XB=C with unbounded operatorsA andB and related abstract Cauchy problems. Mathematische Zeitschrift vol. 208 567–588 (1991) – 10.1007/bf02571546