A Port-Hamiltonian, Index \\( \le 1 \\), Structurally Amenable Electrical Circuit Formulation
Authors
Lena Scholz, John Pryce, Nedialko Nedialkov
Abstract
We present a recently developed electrical circuit formulation that has port-Hamiltonian (pH) structure and results in a structurally amenable differential-algebraic equation (DAE) system of index \( \)\le 1\( \) ≤ 1 . Being pH assures energy stability—the total energy of the system cannot increase. It also provides compositionality—larger pH models can be assembled from smaller ones in a standard way that facilitates building pH models in software. Structurally amenable and index \( \)\le 1\( \) ≤ 1 eliminate the phases of DAE index analysis and reduction, which are commonly used in circuit simulation software. Thus, standard numerical solvers can be applied directly to integrate the DAE. In addition, it has a known a priori block-triangular form that can be exploited for efficient numerical solution. A prototype Matlab code shows high potential for development of this “compact port-Hamiltonian” (CpH) methodology.
Citation
- ISBN: 9783031545160
- Publisher: Springer Nature Switzerland
- DOI: 10.1007/978-3-031-54517-7_3
- Note: International Conference on Scientific Computing in Electrical Engineering
BibTeX
@inbook{Scholz_2024,
title={{A Port-Hamiltonian, Index $$\le 1$$, Structurally Amenable Electrical Circuit Formulation}},
ISBN={9783031545177},
ISSN={2198-3283},
DOI={10.1007/978-3-031-54517-7_3},
booktitle={{Scientific Computing in Electrical Engineering}},
publisher={Springer Nature Switzerland},
author={Scholz, Lena and Pryce, John and Nedialkov, Nedialko},
year={2024},
pages={23--31}
}
References
- Schaft, A. J. Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. Advanced Dynamics and Control of Structures and Machines 127–167 (2004) doi:10.1007/978-3-7091-2774-2_9 – 10.1007/978-3-7091-2774-2_9
- van der Schaft, A. J. Port-Hamiltonian Differential-Algebraic Systems. Surveys in Differential-Algebraic Equations I 173–226 (2013) doi:10.1007/978-3-642-34928-7_5 – 10.1007/978-3-642-34928-7_5
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Brown, D. P. Derivative-explicit differential equations for RLC graphs. Journal of the Franklin Institute 275, 503–514 (1963) – 10.1016/0016-0032(63)90534-9
- Bartel, A., Baumanns, S. & Schöps, S. Structural analysis of electrical circuits including magnetoquasistatic devices. Applied Numerical Mathematics 61, 1257–1270 (2011) – 10.1016/j.apnum.2011.08.004
- Est�vez Schwarz, D. & Tischendorf, C. Structural analysis of electric circuits and consequences for MNA. Int. J. Circ. Theor. Appl. 28, 131–162 (2000) – 10.1002/(sici)1097-007x(200003/04)28:2<131::aid-cta100>3.0.co;2-w
- Riaza, R. Differential-Algebraic Systems. (2008) doi:10.1142/6746 – 10.1142/6746
- G Kron, Tensor Analysis of Networks (1939)
- Pantelides, C. C. The Consistent Initialization of Differential-Algebraic Systems. SIAM J. Sci. and Stat. Comput. 9, 213–231 (1988) – 10.1137/0909014
- Pryce, J. D. Bit Numerical Mathematics 41, 364–394 (2001) – 10.1023/a:1021998624799
- Campbell, S. L. & Gear, C. W. The index of general nonlinear DAEs. Numerische Mathematik 72, 173–196 (1995) – 10.1007/s002110050165
- Hindmarsh, A. C. et al. SUNDIALS. ACM Trans. Math. Softw. 31, 363–396 (2005) – 10.1145/1089014.1089020
- J Vlach, Computer Methods for Circuit Analysis and Design (1994)
- Mattsson, S. E. & Söderlind, G. Index Reduction in Differential-Algebraic Equations Using Dummy Derivatives. SIAM J. Sci. Comput. 14, 677–692 (1993) – 10.1137/0914043
- Jonker, R. & Volgenant, A. A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38, 325–340 (1987) – 10.1007/bf02278710
- Nedialkov, N., Pryce, J. D. & Scholz, L. An Energy-Based, Always Index $\leq$ 1 and Structurally Amenable Electrical Circuit Model. SIAM J. Sci. Comput. 44, B1122–B1147 (2022) – 10.1137/21m1434611
- Falaize, A. & Hélie, T. Passive Guaranteed Simulation of Analog Audio Circuits: A Port-Hamiltonian Approach. Applied Sciences 6, 273 (2016) – 10.3390/app6100273
- Shashkov, V., Cortes Garcia, I. & Egger, H. MONA—A magnetic oriented nodal analysis for electric circuits. Circuit Theory & Apps 50, 2997–3012 (2022) – 10.1002/cta.3301