A passivity-based nonsingular terminal sliding mode controller for mechanical port-Hamiltonian systems
Authors
Naoki Sakata, Kenji Fujimoto, Ichiro Maruta
Abstract
This paper proposes a novel nonsingular terminal sliding mode controller for mechanical systems based on passivity-based control. In the authors’ previous study, passivity-based sliding mode control is realized with kinetic potential energy shaping (KPES), which allows us to construct a wider class of energy-based Lyapunov function candidates. This paper extends KPES to deal with a special class of Lyapunov function candidates whose arguments depend nonlinearly on the momentum. Based on this extension, we propose a nonsingular terminal sliding mode controller that achieves finite time convergence of the closed-loop system with an energy-based Lyapunov function. Due to the passivity-based approach, the proposed controller guarantees Lyapunov stability of the closed-loop system even if the discontinuous control input is replaced with a continuous one to alleviate chattering. A numerical example demonstrates the effectiveness of the proposed method.
Citation
- Journal: 2024 IEEE 63rd Conference on Decision and Control (CDC)
- Year: 2024
- Volume:
- Issue:
- Pages: 8864–8869
- Publisher: IEEE
- DOI: 10.1109/cdc56724.2024.10886856
BibTeX
@inproceedings{Sakata_2024,
title={{A passivity-based nonsingular terminal sliding mode controller for mechanical port-Hamiltonian systems}},
DOI={10.1109/cdc56724.2024.10886856},
booktitle={{2024 IEEE 63rd Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Sakata, Naoki and Fujimoto, Kenji and Maruta, Ichiro},
year={2024},
pages={8864--8869}
}
References
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- Rodríguez, H. & Ortega, R. Stabilization of electromechanical systems via interconnection and damping assignment. Intl J Robust & Nonlinear 13, 1095–1111 (2003) – 10.1002/rnc.804
- Fujimoto, K., Sakai, S. & Sugie, T. Passivity based control of a class of Hamiltonian systems with nonholonomic constraints. Automatica 48, 3054–3063 (2012) – 10.1016/j.automatica.2012.08.032
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Slotine, Applied Nonlinear Control (1991)
- Ferrara, A., Incremona, G. P. & Cucuzzella, M. Advanced and Optimization Based Sliding Mode Control: Theory and Applications. (2019) doi:10.1137/1.9781611975840 – 10.1137/1.9781611975840
- Venkataraman, S. T. & Gulati, S. Control of Nonlinear Systems Using Terminal Sliding Modes. 1992 American Control Conference (1992) doi:10.23919/acc.1992.4792209 – 10.23919/acc.1992.4792209
- Wu, Y., Yu, X. & Man, Z. Terminal sliding mode control design for uncertain dynamic systems. Systems & Control Letters 34, 281–287 (1998) – 10.1016/s0167-6911(98)00036-x
- Feng, Y., Yu, X. & Han, F. On nonsingular terminal sliding-mode control of nonlinear systems. Automatica 49, 1715–1722 (2013) – 10.1016/j.automatica.2013.01.051
- Feng, Y., Yu, X. & Man, Z. Non-singular terminal sliding mode control of rigid manipulators. Automatica 38, 2159–2167 (2002) – 10.1016/s0005-1098(02)00147-4
- Fujimoto, K., Sakata, N., Maruta, I. & Ferguson, J. A Passivity Based Sliding Mode Controller for Simple Port-Hamiltonian Systems. IEEE Control Syst. Lett. 5, 839–844 (2021) – 10.1109/lcsys.2020.3005327
- Sakata, N., Fujimoto, K. & Maruta, I. Passivity-Based Sliding Mode Control for Mechanical Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 69, 5605–5612 (2024) – 10.1109/tac.2024.3371898
- Ferguson, J., Donaire, A. & Middleton, R. H. Kinetic-Potential Energy Shaping for Mechanical Systems With Applications to Tracking. IEEE Control Syst. Lett. 3, 960–965 (2019) – 10.1109/lcsys.2019.2919842
- Venkatraman, A., Ortega, R., Sarras, I. & van der Schaft, A. Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems. IEEE Trans. Automat. Contr. 55, 1059–1074 (2010) – 10.1109/tac.2010.2042010
- Romero, J. G., Ortega, R. & Sarras, I. A Globally Exponentially Stable Tracking Controller for Mechanical Systems Using Position Feedback. IEEE Trans. Automat. Contr. 60, 818–823 (2015) – 10.1109/tac.2014.2330701
- Levant, A. & Shustin, B. Quasi-Continuous MIMO Sliding-Mode Control. IEEE Trans. Automat. Contr. 63, 3068–3074 (2018) – 10.1109/tac.2017.2778251