A Maneuvering Model for an Underwater Vehicle Near a Free Surface—Part III: Simulation and Control Under Waves
Authors
Francis Valentinis, Thomas Battista, Craig Woolsey
Abstract
This article incorporates free-surface and ambient wave effects into a nonlinear parametric model. Subsequently, its use is demonstrated via simulation of a scale model submarine maneuvering under the control of a nonlinear depth-keeping control system in a seaway. An energy-based model is presented, which represents the underactuated submarine in a free-surface-affected state. This model is then used to synthesize a control law using port-Hamiltonian theory and interconnection and damping assignment passivity-based control. The Lyapunov analysis is used to study the stability of the closed-loop system, and a simulation-based demonstration illustrates the performance of the control law. The results demonstrate that a closed-loop nonlinear controller is able to improve the quality of near-surface depth keeping by automatically compensating for parasitic effects in the hydrodynamics that can compromise depth-keeping performance during maneuvers.
Citation
- Journal: IEEE Journal of Oceanic Engineering
- Year: 2023
- Volume: 48
- Issue: 3
- Pages: 752–777
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/joe.2023.3234811
BibTeX
@article{Valentinis_2023,
title={{A Maneuvering Model for an Underwater Vehicle Near a Free Surface—Part III: Simulation and Control Under Waves}},
volume={48},
ISSN={2373-7786},
DOI={10.1109/joe.2023.3234811},
number={3},
journal={IEEE Journal of Oceanic Engineering},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Valentinis, Francis and Battista, Thomas and Woolsey, Craig},
year={2023},
pages={752--777}
}
References
- perez, Ship Motion Control Course Keeping and Roll Stabilisation Using Rudder and Fins (2006)
- Yao, X. & Yang, G. Efficient Multivariable Generalized Predictive Control for Autonomous Underwater Vehicle in Vertical Plane. Mathematical Problems in Engineering vol. 2016 1–9 (2016) – 10.1155/2016/4650380
- battista, Lagrangian mechanics modeling of free surface-affected marine craft. (2018)
- pinkster, Low frequency second order wave exciting forces on floating structures. (1980)
- Mctaggart, K. A. Verification and validation of ShipMo3D ship motion predictions in the time and frequency domains. International Journal of Naval Architecture and Ocean Engineering vol. 3 86–94 (2011) – 10.3744/jnaoe.2011.3.1.086
- Fischer, N., Hughes, D., Walters, P., Schwartz, E. M. & Dixon, W. E. Nonlinear RISE-Based Control of an Autonomous Underwater Vehicle. IEEE Transactions on Robotics vol. 30 845–852 (2014) – 10.1109/tro.2014.2305791
- Yang, Q., Su, H., Zhang, J. & Tang, G. Nonlinear optimal internal model control for AUVs under wave disturbances. 2017 29th Chinese Control And Decision Conference (CCDC) 2847–2852 (2017) doi:10.1109/ccdc.2017.7978997 – 10.1109/ccdc.2017.7978997
- Battista, T., Valentinis, F. & Woolsey, C. A Maneuvering Model for an Underwater Vehicle Near a Free Surface—Part II: Incorporation of the Free-Surface Memory. IEEE Journal of Oceanic Engineering vol. 48 740–751 (2023) – 10.1109/joe.2022.3229919
- Battista, T., Valentinis, F. & Woolsey, C. A Maneuvering Model for an Underwater Vehicle Near a Free Surface—Part I: Motion Without Memory Effects. IEEE Journal of Oceanic Engineering vol. 45 212–226 (2020) – 10.1109/joe.2018.2871650
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica vol. 48 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- Woolsey, C. A. & Techy, L. Cross-track control of a slender, underactuated AUV using potential shaping. Ocean Engineering vol. 36 82–91 (2009) – 10.1016/j.oceaneng.2008.07.010
- bohlmann, Berechnung hydrodynamischer Koeffizienten von Ubooten zur Vorhersage des Bewegungsverhaltens. (1990)
- seil, CFD study of the hydrodynamics of the evolved DST group generic submarine (BB2). (2017)
- Perez, T. & Fossen, T. I. Time- vs. Frequency-domain Identification of Parametric Radiation Force Models for Marine Structures at Zero Speed. Modeling, Identification and Control: A Norwegian Research Bulletin vol. 29 1–19 (2008) – 10.4173/mic.2008.1.1
- arnol’d, Mathematical Methods of Classical Mechanics (2013)
- joubert, Some aspects of submarine design. (2004)
- Donaire, A., Romero, J. G. & Perez, T. Trajectory tracking passivity-based control for marine vehicles subject to disturbances. Journal of the Franklin Institute vol. 354 2167–2182 (2017) – 10.1016/j.jfranklin.2017.01.012
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Morelli, E. System Identification Programs for AirCraft (SIDPAC). AIAA Atmospheric Flight Mechanics Conference and Exhibit (2002) doi:10.2514/6.2002-4704 – 10.2514/6.2002-4704
- schaft, Port-Hamiltonian systems: An introductory survey. Proc Int Congr Mathematicians (0)
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica vol. 45 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- BB2 Dataset. (2015)
- Yang, Q., Gao, D., Liang, K. & Hou, J. Nonlinear optimal vibration control for AUVs with input delay under wave disturbances. 2019 Chinese Control And Decision Conference (CCDC) 5340–5345 (2019) doi:10.1109/ccdc.2019.8832643 – 10.1109/ccdc.2019.8832643
- Liu, S., Wang, D. & Poh, E. Non-linear output feedback tracking control for AUVs in shallow wave disturbance condition. International Journal of Control vol. 81 1806–1823 (2008) – 10.1080/00207170801898885
- Gao, D., Cheng, J. & Yang, Q. Depth control for underactuated AUV in vertical plane using optimal internal model controller. 2016 Chinese Control and Decision Conference (CCDC) 5292–5296 (2016) doi:10.1109/ccdc.2016.7531944 – 10.1109/ccdc.2016.7531944
- Moreira, L. & Guedes Soares, C. $H_{2}$ and $H_{\infty}$ Designs for Diving and Course Control of an Autonomous Underwater Vehicle in Presence of Waves. IEEE Journal of Oceanic Engineering vol. 33 69–88 (2008) – 10.1109/joe.2008.918689
- Dantas, J. L., da Cruz, J. J. & de Barros, E. A. Study of autonomous underwater vehicle wave disturbance rejection in the diving plane. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment vol. 228 122–135 (2013) – 10.1177/1475090213501650
- Hong-han, Z., Di, W., Cong-cong, L. & Zhe-ping, Y. Research on depth control based on output disturbance observer for UUVs maneuvering near the surface. 2012 IEEE International Conference on Mechatronics and Automation 2564–2568 (2012) doi:10.1109/icma.2012.6285751 – 10.1109/icma.2012.6285751
- riedel, Model based predictive control of AUVs for station keeping in a shallow water wave environment. Proc Int Adv Robotics Program (0)
- conway, Characterisation of suction effects on a submarine body operating near the free surface. Proc 21st Australas Fluid Mechanics Conf (0)
- crook, An initial assessment of free surface effects on submerged bodies. (1994)
- Donaire, A. & Perez, T. Port-Hamiltonian Theory of Motion Control for Marine Craft. IFAC Proceedings Volumes vol. 43 201–206 (2010) – 10.3182/20100915-3-de-3008.00054
- cummins, The impulse response function and ship motions. (1962)
- feldman, DTNSRDC revised standard submaine equations of motion. (1979)
- Fossen, T. I. Handbook of Marine Craft Hydrodynamics and Motion Control. (2011) doi:10.1002/9781119994138 – 10.1002/9781119994138
- Astolfi, A., Chhabra, D. & Ortega, R. Asymptotic stabilization of some equilibria of an underactuated underwater vehicle. Systems & Control Letters vol. 45 193–206 (2002) – 10.1016/s0167-6911(01)00176-1
- Chang, D. E., Bloch, A. M., Leonard, N. E., Marsden, J. E. & Woolsey, C. A. The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems. ESAIM: Control, Optimisation and Calculus of Variations vol. 8 393–422 (2002) – 10.1051/cocv:2002045
- Brogliato, B., Maschke, B., Lozano, R. & Egeland, O. Dissipative Systems Analysis and Control. Communications and Control Engineering (Springer London, 2007). doi:10.1007/978-1-84628-517-2 – 10.1007/978-1-84628-517-2
- Liceaga-Castro, E. & van der Molen, G. M. Submarine H/sup ∞/ depth control under wave disturbances. IEEE Transactions on Control Systems Technology vol. 3 338–346 (1995) – 10.1109/87.406981
- Battista, T., Jung, S., Woolsey, C. & Paterson, E. An energy-casimir approach to underwater vehicle depth and heading regulation in short crested waves. 2017 IEEE Conference on Control Technology and Applications (CCTA) 217–222 (2017) doi:10.1109/ccta.2017.8062466 – 10.1109/ccta.2017.8062466
- Jung, S., Brizzolara, S. & Woolsey, C. An Approach for Computing Parameters for a Lagrangian Nonlinear Maneuvering and Seakeeping Model of Submerged Vessel Motion. IEEE Journal of Oceanic Engineering vol. 46 749–764 (2021) – 10.1109/joe.2021.3052657
- jung, Determining parameters for a Lagrangian mechanical system model of a submerged vessel maneuvering in waves. (2020)
- Gertler, M. & Hagen, G. R. STANDARD EQUATIONS OF MOTION FOR SUBMARINE SIMULATION. http://dx.doi.org/10.21236/AD0653861 (1967) doi:10.21236/ad0653861 – 10.21236/ad0653861
- Valentinis, F. & Woolsey, C. Nonlinear control of a subscale submarine in emergency ascent. Ocean Engineering vol. 171 646–662 (2019) – 10.1016/j.oceaneng.2018.11.029
- Marsden, J. E. & Ratiu, T. S. Introduction to Mechanics and Symmetry. Texts in Applied Mathematics (Springer New York, 1999). doi:10.1007/978-0-387-21792-5 – 10.1007/978-0-387-21792-5
- Leonard, N. E. Stability of a bottom-heavy underwater vehicle. Automatica vol. 33 331–346 (1997) – 10.1016/s0005-1098(96)00176-8
- Valentinis, F., Donaire, A. & Perez, T. Energy-based motion control of a slender hull unmanned underwater vehicle. Ocean Engineering vol. 104 604–616 (2015) – 10.1016/j.oceaneng.2015.05.014
- Battista, T., Woolsey, C., McCue-Weil, L., Paterson, E. & Valentinis, F. Underwater vehicle depth and attitude regulation in plane progressive waves. 2015 54th IEEE Conference on Decision and Control (CDC) 4400–4405 (2015) doi:10.1109/cdc.2015.7402906 – 10.1109/cdc.2015.7402906
- Valentinis, F., Donaire, A. & Perez, T. Energy-based guidance of an underactuated unmanned underwater vehicle on a helical trajectory. Control Engineering Practice vol. 44 138–156 (2015) – 10.1016/j.conengprac.2015.07.010
- schaft, L2-Gain and Passivity Techniques in Nonlinear Control Ser Communications and Control Engineering (2000)
- Thomasson, P. G. & Woolsey, C. A. Vehicle Motion in Currents. IEEE Journal of Oceanic Engineering vol. 38 226–242 (2013) – 10.1109/joe.2013.2238054
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3