A Kernel Representation of Dirac Structures for Infinite-dimensional Systems
Authors
O.V. Iftime, M. Roman, A. Sandovici
Abstract
Dirac structures are used as the underlying structure to mathematically formalize port-Hamiltonian systems. This note approaches the Dirac structures for infinite-dimensional systems using the theory of linear relations on Hilbert spaces. First, a kernel representation for a Dirac structure is proposed. The one-to-one correspondence between Dirac structures and unitary operators is revisited. Further, the proposed kernel representation and a scattering representation are constructively related. Several illustrative examples are also presented in the paper.
Citation
- Journal: Mathematical Modelling of Natural Phenomena
- Year: 2014
- Volume: 9
- Issue: 5
- Pages: 295–308
- Publisher: EDP Sciences
- DOI: 10.1051/mmnp/20149520
BibTeX
@article{Iftime_2014,
title={{A Kernel Representation of Dirac Structures for Infinite-dimensional Systems}},
volume={9},
ISSN={1760-6101},
DOI={10.1051/mmnp/20149520},
number={5},
journal={Mathematical Modelling of Natural Phenomena},
publisher={EDP Sciences},
author={Iftime, O.V. and Roman, M. and Sandovici, A.},
editor={Damanik, David and Ruzhansky, Michael and Vougalter, Vitali and Wong, M.W.},
year={2014},
pages={295--308}
}
References
- Arens, R. Operational calculus of linear relations. Pacific Journal of Mathematics vol. 11 9–23 (1961) – 10.2140/pjm.1961.11.9
- Bognár, J. Indefinite Inner Product Spaces. (Springer Berlin Heidelberg, 1974). doi:10.1007/978-3-642-65567-8 – 10.1007/978-3-642-65567-8
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- Derkach, V., Hassi, S., Malamud, M. & de Snoo, H. Boundary relations and their Weyl families. Transactions of the American Mathematical Society vol. 358 5351–5401 (2006) – 10.1090/s0002-9947-06-04033-5
- Dorfman, I. Ya. Dirac structures of integrable evolution equations. Physics Letters A vol. 125 240–246 (1987) – 10.1016/0375-9601(87)90201-5
- Foias, Journal of Operator Theory (1984)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Iftime, ROMAI J. (2011)
- Kurula, M., Zwart, H., van der Schaft, A. & Behrndt, J. Dirac structures and their composition on Hilbert spaces. Journal of Mathematical Analysis and Applications vol. 372 402–422 (2010) – 10.1016/j.jmaa.2010.07.004
- Polyuga, R. V. & van der Schaft, A. J. Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Systems & Control Letters vol. 61 412–421 (2012) – 10.1016/j.sysconle.2011.12.008
- Redheffer, R. M. On a Certain Linear Fractional Transformation. Journal of Mathematics and Physics vol. 39 269–286 (1960) – 10.1002/sapm1960391269
- van der Schaft, A. & Maschke, B. Interconnected mechanical systems, part I: geometry of interconnection and implicit Hamiltonian systems. Modelling and Control of Mechanical Systems 1–15 (1997) doi:10.1142/9781848160873_0001 – 10.1142/9781848160873_0001
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3