Virtual Holonomic Constraints Control for port-Hamiltonian Systems: A Case Study of Fully Actuated Mechanical Systems
Authors
Yuki Okura, Kenji Fujimoto, Chiaki Kojima
Abstract
In this paper, virtual holonomic constraints control of port-Hamiltonian systems is proposed. In this research we especially focus on controller design for fully actuated mechanical systems as a case study. A virtual holonomic constraint force is calculated as a nonlinear feedback input by introducing the coordinate transformation. When some assumptions hold, this feedback successfully converts the original mechanical system into the reduced order port-Hamiltonian system with desired holonomic constraints. A numerical example shows the effectiveness and the property of the proposed virtual holonominc control.
Keywords
nonlinear control; port-Hamiltonian systems; tracking control; mechanical systems
Citation
- Journal: IFAC-PapersOnLine
- Year: 2020
- Volume: 53
- Issue: 2
- Pages: 5598–5603
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2020.12.1573
- Note: 21st IFAC World Congress- Berlin, Germany, 11–17 July 2020
BibTeX
@article{Okura_2020,
title={{Virtual Holonomic Constraints Control for port-Hamiltonian Systems: A Case Study of Fully Actuated Mechanical Systems}},
volume={53},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2020.12.1573},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Okura, Yuki and Fujimoto, Kenji and Kojima, Chiaki},
year={2020},
pages={5598--5603}
}
References
- Aguiar, A. P. & Hespanha, J. P. Trajectory-Tracking and Path-Following of Underactuated Autonomous Vehicles With Parametric Modeling Uncertainty. IEEE Transactions on Automatic Control vol. 52 1362–1379 (2007) – 10.1109/tac.2007.902731
- Akhtar, A., Nielsen, C. & Waslander, S. L. Path Following Using Dynamic Transverse Feedback Linearization for Car-Like Robots. IEEE Transactions on Robotics vol. 31 269–279 (2015) – 10.1109/tro.2015.2395711
- Arai, H., Takubo, T., Hayashibara, Y. & Tanie, K. Human-robot cooperative manipulation using a virtual nonholonomic constraint. Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065) vol. 4 4063–4069 – 10.1109/robot.2000.845365
- Duindam, V. & Stramigioli, S. Port-Based Asymptotic Curve Tracking for Mechanical Systems. European Journal of Control vol. 10 411–420 (2004) – 10.3166/ejc.10.411-420
- Fujimoto, K., Sakai, S. & Sugie, T. Passivity based control of a class of Hamiltonian systems with nonholonomic constraints. Automatica vol. 48 3054–3063 (2012) – 10.1016/j.automatica.2012.08.032
- Hladio, A., Nielsen, C. & Wang, D. Path Following for a Class of Mechanical Systems. IEEE Transactions on Control Systems Technology vol. 21 2380–2390 (2013) – 10.1109/tcst.2012.2223470
- Hogan, N. Impedance Control: An Approach to Manipulation. 1984 American Control Conference (1984) doi:10.23919/acc.1984.4788393 – 10.23919/acc.1984.4788393
- Kishi, Y., Zhi Wei Luo, Asano, F. & Hosoe, S. Passive impedance control with time-varying impedance center. Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium (Cat. No.03EX694) vol. 3 1207–1212 – 10.1109/cira.2003.1222169
- Li, P. Y. & Horowitz, R. Passive velocity field control (PVFC). Part I. Geometry and robustness. IEEE Transactions on Automatic Control vol. 46 1346–1359 (2001) – 10.1109/9.948463
- Li, P. Y. & Horowitz, R. Passive velocity field control (PVFC). Part II. Application to contour following. IEEE Transactions on Automatic Control vol. 46 1360–1371 (2001) – 10.1109/9.948464
- Maschke, B. M., van der Schaft, A. J. & Breedveld, P. C. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications vol. 42 73–82 (1995) – 10.1109/81.372847
- Nakamura, H. Global Nonsmooth Control Lyapunov Function Design for Path-Following Problem via Minimum Projection Method. IFAC-PapersOnLine vol. 49 600–605 (2016) – 10.1016/j.ifacol.2016.10.231
- Nielsen, C. & Maggiore, M. Output stabilization and maneuver regulation: A geometric approach. Systems & Control Letters vol. 55 418–427 (2006) – 10.1016/j.sysconle.2005.09.006
- Salisbury, J. Active stiffness control of a manipulator in cartesian coordinates. 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes (1980) doi:10.1109/cdc.1980.272026 – 10.1109/cdc.1980.272026
- van der Schaft, (1996)
- Van Der Schaft, A. J. & Maschke, B. M. On the Hamiltonian formulation of nonholonomic mechanical systems. Reports on Mathematical Physics vol. 34 225–233 (1994) – 10.1016/0034-4877(94)90038-8