Integration of inventory control into the port‐Hamiltonian framework for dissipative stabilization of chemical reactors
Authors
Abstract
This work integrates passivity‐based inventory control with the port‐Hamiltonian framework to design stabilizing feedback laws for lumped parameter chemically reacting systems. A static state feedback law with admissible controls is developed using an inventory‐related storage function as a closed loop Hamiltonian function. The control gain matrix is derived from the interconnection and damping matrices of the resulting Hamiltonian representation. Consequently, the proposed controller globally and exponentially stabilizes the system at a desired set‐point (including the open loop unstable equilibrium point) without restrictions on the reaction kinetics. Numerical simulations illustrate the application of the theory to a nonisothermal, continuous stirred tank reactor with the steady‐state multiplicity. The proposed approach is compared with the thermodynamic availability‐based control approach in terms of amplitude and variation rate to show its performance and effectiveness.
Citation
- Journal: Asian Journal of Control
- Year: 2022
- Volume: 24
- Issue: 5
- Pages: 2490–2504
- Publisher: Wiley
- DOI: 10.1002/asjc.2668
BibTeX
@article{Hoang_2022,
title={{Integration of inventory control into the port‐Hamiltonian framework for dissipative stabilization of chemical reactors}},
volume={24},
ISSN={1934-6093},
DOI={10.1002/asjc.2668},
number={5},
journal={Asian Journal of Control},
publisher={Wiley},
author={Hoang, N. Ha and Ydstie, B. Erik},
year={2022},
pages={2490--2504}
}
References
- Glansdorff P., Thermodynamic Theory of Structure, Stability and Fluctuations (1971)
- Alonso, A. A. & Erik Ydstie, B. Process systems, passivity and the second law of thermodynamics. Computers & Chemical Engineering vol. 20 S1119–S1124 (1996) – 10.1016/0098-1354(96)00194-9
- Ydstie, B. E. & Alonso, A. A. Process systems and passivity via the Clausius-Planck inequality. Systems & Control Letters vol. 30 253–264 (1997) – 10.1016/s0167-6911(97)00023-6
- Hangos, K. M., Alonso, A. A., Perkins, J. D. & Ydstie, B. E. Thermodynamic approach to the structural stability of process plants. AIChE Journal vol. 45 802–816 (1999) – 10.1002/aic.690450414
- Asbjørnsen, O. A. & Field, M. Response modes of continuous stirred tank reactors. Chemical Engineering Science vol. 25 1627–1636 (1970) – 10.1016/0009-2509(70)80054-9
- Rodrigues, D., Srinivasan, S., Billeter, J. & Bonvin, D. Variant and invariant states for chemical reaction systems. Computers & Chemical Engineering vol. 73 23–33 (2015) – 10.1016/j.compchemeng.2014.10.009
- Haddad W. M., Thermodynamics—A Dynamical Systems Approach (2005)
- Bao J., Process Control: The Passive Systems Approach (2007)
- Hoang, N. H. & Dochain, D. A comment on thermodynamically consistent feasibility condition of asymptotic observers. Chemical Engineering Science vol. 199 258–274 (2019) – 10.1016/j.ces.2019.01.010
- Jillson, K. R. & Erik Ydstie, B. Process networks with decentralized inventory and flow control. Journal of Process Control vol. 17 399–413 (2007) – 10.1016/j.jprocont.2006.12.006
- Otero-Muras, I., Szederkényi, G., Hangos, K. M. & Alonso, A. A. Dynamic analysis and control of biochemical reaction networks. Mathematics and Computers in Simulation vol. 79 999–1009 (2008) – 10.1016/j.matcom.2008.02.019
- Favache, A. & Dochain, D. Thermodynamics and chemical systems stability: The CSTR case study revisited. Journal of Process Control vol. 19 371–379 (2009) – 10.1016/j.jprocont.2008.07.007
- Ederer, M., Dieter Gilles, E. & Sawodny, O. The Glansdorff–Prigogine stability criterion for biochemical reaction networks. Automatica vol. 47 1097–1104 (2011) – 10.1016/j.automatica.2011.01.072
- Hoang, N. H. & Dochain, D. On an evolution criterion of homogeneous multi-component mixtures with chemical transformation. Systems & Control Letters vol. 62 170–177 (2013) – 10.1016/j.sysconle.2012.11.013
- Grmela, M. Geometry of Multiscale Nonequilibrium Thermodynamics. Entropy vol. 17 5938–5964 (2015) – 10.3390/e17095938
- García-Sandoval, J. P., Hudon, N., Dochain, D. & González-Álvarez, V. Stability analysis and passivity properties of a class of thermodynamic processes: An internal entropy production approach. Chemical Engineering Science vol. 139 261–272 (2016) – 10.1016/j.ces.2015.07.039
- van der Schaft, A. J., Rao, S. & Jayawardhana, B. A network dynamics approach to chemical reaction networks. International Journal of Control vol. 89 731–745 (2015) – 10.1080/00207179.2015.1095353
- Ydstie, B. E. Stability of Multi-Phase Systems Evolving on an Equilibrium Manifold. IFAC-PapersOnLine vol. 49 943–948 (2016) – 10.1016/j.ifacol.2016.07.321
- Ramirez, H., Maschke, B. & Sbarbaro, D. Partial Stabilization of Input-Output Contact Systems on a Legendre Submanifold. IEEE Transactions on Automatic Control vol. 62 1431–1437 (2017) – 10.1109/tac.2016.2572403
- Luyben W. L., Process Modeling, Simulation, and Control for Chemical Engineers (1990)
- P. Niemiec, M. & Kravaris, C. Nonlinear model-state feedback control for nonminimum-phase processes. Automatica vol. 39 1295–1302 (2003) – 10.1016/s0005-1098(03)00103-1
- Viel, F., Jadot, F. & Bastin, G. Global stabilization of exothermic chemical reactors under input constraints. Automatica vol. 33 1437–1448 (1997) – 10.1016/s0005-1098(97)00071-x
- Bruns, D. D. & Bailey, J. E. Process operation near an unstable steady state using nonlinear feedback control. Chemical Engineering Science vol. 30 755–762 (1975) – 10.1016/0009-2509(75)85103-7
- Favache, A. & Dochain, D. Power-shaping control of reaction systems: The CSTR case. Automatica vol. 46 1877–1883 (2010) – 10.1016/j.automatica.2010.07.011
- Alvarez, J., Alvarez-Ramirez, J., Espinosa-Perez, G. & Schaum, A. Energy shaping plus damping injection control for a class of chemical reactors. Chemical Engineering Science vol. 66 6280–6286 (2011) – 10.1016/j.ces.2011.09.002
- Hoang, N. H., Couenne, F., Jallut, C. & Le Gorrec, Y. Thermodynamics based stability analysis and its use for nonlinear stabilization of the CSTR. Computers & Chemical Engineering vol. 58 156–177 (2013) – 10.1016/j.compchemeng.2013.06.016
- Kravaris, C. & Kantor, J. C. Geometric methods for nonlinear process control. 1. Background. Industrial & Engineering Chemistry Research vol. 29 2295–2310 (1990) – 10.1021/ie00108a001
- Kravaris, C. & Kantor, J. C. Geometric methods for nonlinear process control. 2. Controller synthesis. Industrial & Engineering Chemistry Research vol. 29 2310–2323 (1990) – 10.1021/ie00108a002
- Alvarez-Ramirez, J. & Morales, A. PI control of continuously stirred tank reactors: stability and performance. Chemical Engineering Science vol. 55 5497–5507 (2000) – 10.1016/s0009-2509(00)00173-1
- Antonelli, R. & Astolfi, A. Continuous stirred tank reactors: easy to stabilise? Automatica vol. 39 1817–1827 (2003) – 10.1016/s0005-1098(03)00177-8
- Afsi, N. et al. Model predictive control for continuous lactide ring‐opening polymerization processes. Asian Journal of Control vol. 23 92–104 (2020) – 10.1002/asjc.2453
- Hangos, K. M., Bokor, J. & Szederkényi, G. Hamiltonian view on process systems. AIChE Journal vol. 47 1819–1831 (2001) – 10.1002/aic.690470813
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors. Journal of Process Control vol. 21 1449–1458 (2011) – 10.1016/j.jprocont.2011.06.014
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica vol. 64 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Fang, Z. & Gao, C. Stabilization of Input-Disturbed Stochastic Port-Hamiltonian Systems Via Passivity. IEEE Transactions on Automatic Control vol. 62 4159–4166 (2017) – 10.1109/tac.2017.2676619
- Hudon, N. & Bao, J. Dissipativity-based decentralized control of interconnected nonlinear chemical processes. Computers & Chemical Engineering vol. 45 84–101 (2012) – 10.1016/j.compchemeng.2012.05.013
- Georgakis, C. On the use of extensive variables in process dynamics and control. Chemical Engineering Science vol. 41 1471–1484 (1986) – 10.1016/0009-2509(86)85232-0
- Keenan, J. H. Availability and irreversibility in thermodynamics. British Journal of Applied Physics vol. 2 183–192 (1951) – 10.1088/0508-3443/2/7/302
- Alonso, A. A. & Ydstie, B. E. Stabilization of distributed systems using irreversible thermodynamics. Automatica vol. 37 1739–1755 (2001) – 10.1016/s0005-1098(01)00140-6
- Hoang, H., Couenne, F., Jallut, C. & Le Gorrec, Y. Lyapunov-based control of non isothermal continuous stirred tank reactors using irreversible thermodynamics. Journal of Process Control vol. 22 412–422 (2012) – 10.1016/j.jprocont.2011.12.007
- De Persis, C. & Monshizadeh, N. Bregman Storage Functions for Microgrid Control. IEEE Transactions on Automatic Control vol. 63 53–68 (2018) – 10.1109/tac.2017.2709246
- Ferguson, J., Donaire, A. & Middleton, R. H. Integral Control of Port-Hamiltonian Systems: Nonpassive Outputs Without Coordinate Transformation. IEEE Transactions on Automatic Control vol. 62 5947–5953 (2017) – 10.1109/tac.2017.2700995
- Brockett, R. W. Thermodynamics with time: Exergy and passivity. Systems & Control Letters vol. 101 44–49 (2017) – 10.1016/j.sysconle.2016.06.009
- Fang, Z., Ydstie, B. E. & Gao, C. Thermodynamic Potentials from Stationary Probabilities. IFAC-PapersOnLine vol. 52 96–102 (2019) – 10.1016/j.ifacol.2019.07.017
- Farschman, C. A., Viswanath, K. P. & Erik Ydstie, B. Process systems and inventory control. AIChE Journal vol. 44 1841–1857 (1998) – 10.1002/aic.690440814
- Ruszkowski, M., Garcia‐Osorio, V. & Ydstie, B. E. Passivity based control of transport reaction systems. AIChE Journal vol. 51 3147–3166 (2005) – 10.1002/aic.10543
- Nguyen, T. S., Hoang, N. H. & Azlan Hussain, M. Feedback passivation plus tracking-error-based multivariable control for a class of free-radical polymerisation reactors. International Journal of Control vol. 92 1970–1984 (2018) – 10.1080/00207179.2017.1423393
- Nguyen, T. S., Hoang, N. H., Hussain, M. A. & Tan, C. K. Tracking-error control via the relaxing port-Hamiltonian formulation: Application to level control and batch polymerization reactor. Journal of Process Control vol. 80 152–166 (2019) – 10.1016/j.jprocont.2019.05.014
- Juan Du, Laird, C. M. & Ydstie, B. E. The measurement selection of inventory control. Proceedings of the 2010 American Control Conference 3555–3560 (2010) doi:10.1109/acc.2010.5530854 – 10.1109/acc.2010.5530854
- Ngoc-Ha Hoang, Du Juan & Ydstie, B. E. On the passivity of inventory control in the Port Hamiltonian framework. 2013 American Control Conference 1639–1644 (2013) doi:10.1109/acc.2013.6580070 – 10.1109/acc.2013.6580070
- Kuhlmann, A. & Bogle, D. Study on nonminimum phase behaviour and optimal operation. Computers & Chemical Engineering vol. 21 S397–S402 (1997) – 10.1016/s0098-1354(97)87534-5
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Jeltsema, D., Ortega, R. & M.A. Scherpen, J. An energy-balancing perspective of interconnection and damping assignment control of nonlinear systems. Automatica vol. 40 1643–1646 (2004) – 10.1016/j.automatica.2004.04.007
- Wu, D., Ortega, R. & Duan, G. On universal stabilization property of Interconnection and Damping Assignment Control. Automatica vol. 119 109087 (2020) – 10.1016/j.automatica.2020.109087
- Ramírez, H., Sbarbaro, D. & Ortega, R. On the control of non-linear processes: An IDA–PBC approach. Journal of Process Control vol. 19 405–414 (2009) – 10.1016/j.jprocont.2008.06.018
- Dörfler, F., Johnsen, J. K. & Allgöwer, F. An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control vol. 19 1413–1426 (2009) – 10.1016/j.jprocont.2009.07.015
- Ha Hoang, N., Couenne, F., Le Gorrec, Y., Chen, C. L. & Ydstie, B. E. Passivity-based nonlinear control of CSTR via asymptotic observers. Annual Reviews in Control vol. 37 278–288 (2013) – 10.1016/j.arcontrol.2013.09.007
- Schaft A. J., Port‐controlled Hamiltonian systems: Towards a theory for control and design of nonlinear physical systems. SICE J. (2000)
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- Khalil H. K., Nonlinear Systems (2002)
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics vol. 60 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Otero-Muras, I., Szederkényi, G., Alonso, A. A. & Hangos, K. M. Local dissipative Hamiltonian description of reversible reaction networks. Systems & Control Letters vol. 57 554–560 (2008) – 10.1016/j.sysconle.2007.12.003
- Callen H. B., Thermodynamics and An Introduction to Thermostatics (1985)
- Romo-Hernández, A., Hudon, N., Ydstie, B. E. & Dochain, D. Thermodynamic Analysis and Feedback Stabilization for Irreversible Liquid–Vapor Systems. Industrial & Engineering Chemistry Research vol. 59 2252–2260 (2020) – 10.1021/acs.iecr.9b04869
- Bahroun, S., Couenne, F., Jallut, C. & Valentin, C. Thermodynamics-Based Nonlinear Control of a Three-Phase Slurry Catalytic Fed-Batch Reactor. IEEE Transactions on Control Systems Technology vol. 21 360–371 (2013) – 10.1109/tcst.2011.2181173
- Hoang, N. H. & Dochain, D. On the equivalence of storage functions in controlled thermodynamic systems. IFAC-PapersOnLine vol. 49 579–584 (2016) – 10.1016/j.ifacol.2016.07.405