Trajectory Tracking Controller of Underwater Vehicle with Model Uncertainties and External Disturbances
Authors
Jihang Yang, Yonghe Xie, Gangqiang Li
Abstract
This paper designed a trajectory tracking controller for an underwater vehicle considering model uncertainties and external force disturbances using the Port-Hamiltonian (PH) control theory. Firstly, the mathematical model of the underwater vehicle is established and expressed under the PH framework. However, the hydrodynamic force coefficients inside the mathematical model are hard to obtain accurately without detailed towing tank experiments. To address this, we will propose a parameter observer to estimate the unknown parameters caused by model uncertainties. Meanwhile, the vehicle inevitably suffers from external unknown force disturbances driven by current and wind. So another observer based on passivity theory is proposed to address the unknown fore disturbance. The control law is derived from reshaping kinetic energy and injecting damping terms via the interconnection and damping assignment passivity-based control method. This proposed controller has a physical interpretation. Moreover, it has been proved that the proposed controller can enable vehicles to track the desired trajectory and minimize the tracking errors exponentially. Numerical simulations and comparisons illustrate the stability and effectiveness of the proposed controller to model uncertainties and unknown external disturbances.
Keywords
port-controlled hamiltonian system, trajectory tracking control, unmanned underwater vehicle
Citation
- ISBN: 9789811966125
- Publisher: Springer Nature Singapore
- DOI: 10.1007/978-981-19-6613-2_157
- Note: International Conference on Guidance, Navigation and Control
BibTeX
@inbook{Yang_2023,
title={{Trajectory Tracking Controller of Underwater Vehicle with Model Uncertainties and External Disturbances}},
ISBN={9789811966132},
ISSN={1876-1119},
DOI={10.1007/978-981-19-6613-2_157},
booktitle={{Advances in Guidance, Navigation and Control}},
publisher={Springer Nature Singapore},
author={Yang, Jihang and Xie, Yonghe and Li, Gangqiang},
year={2023},
pages={1601--1613}
}References
- Li, Y. et al. Study of 3 dimension trajectory tracking of underactuated autonomous underwater vehicle. Ocean Engineering 105, 270–274 (2015) – 10.1016/j.oceaneng.2015.06.034
- Bechlioulis, C. P., Karras, G. C., Heshmati-Alamdari, S. & Kyriakopoulos, K. J. Trajectory Tracking With Prescribed Performance for Underactuated Underwater Vehicles Under Model Uncertainties and External Disturbances. IEEE Trans. Contr. Syst. Technol. 25, 429–440 (2017) – 10.1109/tcst.2016.2555247
- Heshmati-Alamdari, S., Nikou, A. & Dimarogonas, D. V. Robust Trajectory Tracking Control for Underactuated Autonomous Underwater Vehicles in Uncertain Environments. IEEE Trans. Automat. Sci. Eng. 18, 1288–1301 (2021) – 10.1109/tase.2020.3001183
- Aguiar, A. P. & Hespanha, J. P. Trajectory-Tracking and Path-Following of Underactuated Autonomous Vehicles With Parametric Modeling Uncertainty. IEEE Trans. Automat. Contr. 52, 1362–1379 (2007) – 10.1109/tac.2007.902731
- Elmokadem, T., Zribi, M. & Youcef-Toumi, K. Trajectory tracking sliding mode control of underactuated AUVs. Nonlinear Dyn 84, 1079–1091 (2015) – 10.1007/s11071-015-2551-x
- Elmokadem, T., Zribi, M. & Youcef-Toumi, K. Terminal sliding mode control for the trajectory tracking of underactuated Autonomous Underwater Vehicles. Ocean Engineering 129, 613–625 (2017) – 10.1016/j.oceaneng.2016.10.032
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- Astolfi, A., Chhabra, D. & Ortega, R. Asymptotic stabilization of some equilibria of an underactuated underwater vehicle. Systems & Control Letters 45, 193–206 (2002) – 10.1016/s0167-6911(01)00176-1
- R Ortega, IEEE Control Syst. Mag. (2001)
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control 10, 432–450 (2004) – 10.3166/ejc.10.432-450
- Ortega, R. & Espinosa-Pérez, G. PASSIVITY BASED CONTROL WITH SIMULTANEOUS ENERGY SHAPING AND DAMPING INJECTION: THE INDUCTION MOTOR CASE STUDY. IFAC Proceedings Volumes 38, 477–482 (2005) – 10.3182/20050703-6-cz-1902.00734
- van der Schaft, A. Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–1365 (2007) doi:10.4171/022-3/65 – 10.4171/022-3/65
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Maschke, B. M. & van der Schaft, A. J. Port-Controlled Hamiltonian Systems: Modelling Origins and Systemtheoretic Properties. IFAC Proceedings Volumes 25, 359–365 (1992) – 10.1016/s1474-6670(17)52308-3
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Donaire, A., Guadalupe Romero, J. & Perez, T. Passivity-based Trajectory-tracking for Marine Craft with Disturbance Rejection. IFAC-PapersOnLine 48, 19–24 (2015) – 10.1016/j.ifacol.2015.10.252
- Donaire, A. & Perez, T. Port-Hamiltonian Theory of Motion Control for Marine Craft. IFAC Proceedings Volumes 43, 201–206 (2010) – 10.3182/20100915-3-de-3008.00054
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica 48, 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- Jia, Z., Qiao, L. & Zhang, W. Adaptive tracking control of unmanned underwater vehicles with compensation for external perturbations and uncertainties using Port-Hamiltonian theory. Ocean Engineering 209, 107402 (2020) – 10.1016/j.oceaneng.2020.107402
- Donaire, A., Romero, J. G. & Perez, T. Trajectory tracking passivity-based control for marine vehicles subject to disturbances. Journal of the Franklin Institute 354, 2167–2182 (2017) – 10.1016/j.jfranklin.2017.01.012
- Sen, D. A Study on Sensitivity of Maneuverability Performance on the Hydrodynamic Coefficients for Submerged Bodies. Journal of Ship Research 44, 186–196 (2000) – 10.5957/jsr.2000.44.3.186
- Guerrero, J., Torres, J., Creuze, V. & Chemori, A. Trajectory tracking for autonomous underwater vehicle: An adaptive approach. Ocean Engineering 172, 511–522 (2019) – 10.1016/j.oceaneng.2018.12.027
- Dirksz, D. A. & Scherp, J. M. A. Adaptive tracking control of fully actuated port-Hamiltonian mechanical systems. 2010 IEEE International Conference on Control Applications 1678–1683 (2010) doi:10.1109/cca.2010.5611301 – 10.1109/cca.2010.5611301
- Fossen, T. I. Handbook of Marine Craft Hydrodynamics and Motion Control. (2011) doi:10.1002/9781119994138 – 10.1002/9781119994138
- Fang, M.-C., Chen, J.-H., Luo, J.-H. & Hou, C.-S. On the Behavior of an Underwater Remotely Operated Vehicle in a Uniform Current. Marine Technology and SNAME News 45, 241–249 (2008) – 10.5957/mt1.2008.45.4.241
- Fang, M.-C. & Huang, Y.-L. The simulation of the ROV motion with anti-pitch control in uniform current. 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies 120–125 (2007) doi:10.1109/ut.2007.370951 – 10.1109/ut.2007.370951